
COMP 210, FALL 2000
Lecture 13: Family Trees, From Yet Another Angle

Reminders:
• 1/2 Homework assignment, available today, due Wednesday
• Exam will be handed back on Monday

Review
1. Spent some time talking about the test
2. Developed a new notion of family tree that included empty and more fields; then we

developed in-family? and count-female-ancestors for these ftns.

Defining a Family Tree, Take 2

;; a ftn is either
;; – empty, or
;; – (make-ftn name mother father year eyes)
;; where name is a symbol, mother and father are ftn, year is a number,
;; and eyes is a symbol
(define-struct ftn (name mother father year eyes))

;; Examples
 empty
 (make-ftn

'Mary
(make-ftn 'Ann empty empty 1950 'blue)
empty
1975
'green)

What does the template for this more complex ftn look like?

(define (f … a-ftn …)
 (cond
 [(empty? a-ftn) …]
 [(ftn? a-ftn) …

(ftn-name a-ftn) …
(f (ftn-mother a-ftn) …) …
(f (ftn-father a-ftn) …) …
(ftn-year a-ftn) …
(ftn-eyes a-ftn) …

]
))

Here is a mildly corrected version of count-female-ancestors from the end of last class

;; count-female-ancestors: ftn -> num
;; Purpose: consumes a ftn and returns the number of female ancestors
(define (count-female-ancestors a-ftn)
 (cond
 [(empty? a-ftn) 0]
 [else
 (cond

 [(empty? (ftn-mother a-ftn) (count-female-ancestors (ftn-father a-ftn))]
 [else (+ 1

 (count-female-ancestors (ftn-mother a-ftn))
 (count-female-ancestors (ftn-father a-ftn)))])]

))

Is this ok? No, it violates one of the rules of COMP 210–-one discussed in the book that
I haven't hit on heavily in class.

A program should only look inside one data definition. If you need to look inside
more than one data-definition, use a second function–-a helper function. The
code comes out cleaner; down the road, it is easier to understand and easier to
modify.

This version of count-female-ancestors looks inside both a-ftn and (ftn-mother a-ftn) .
Doing so leads to all that mess in the else case of the outer cond. Following the rule
produces a somewhat simpler version of count-female ancestors.

;; count-mother: ftn -> num
;; Pupose: determine how many ancestors to add for current mother
(define (count-mother a-ftn)
 (cond
 [(emtpy? a-ftn) 0]
 [else 1]
))

;; count-female-ancestors: ftn -> num
;; Purpose: consumes a ftn and returns the number of female ancestors
(define (count-female-ancestors a-ftn)
 (cond
 [(empty? a-ftn) 0]
 [else
 (+ 1 (count-mother (ftn-mother a-ftn)

 (count-female-ancestors (ftn-mother a-ftn))
 (count-female-ancestors (ftn-father a-ftn)))]

))

This is much cleaner.

What if we wanted to only count blue-eyed female ancestors? What must we change?
Only the helper function!

;; count-if-blue-eyes: ftn -> num
;; Purpose: returns 1 if the ftn has blue eyes, 0 otherwise
(define (count-if-blue-eyes a-ftn)
 (cond
 [(symbol=? 'blue (ftn-eyes a-ftn)) 1]
 [else 0]
))

;; count-mother: ftn -> num
;; Pupose: determine how many ancestors to add for current mother
(define (count-mother a-ftn)
 (cond
 [(emtpy? a-ftn) 0]
 [else (count-if-blue-eyes a-ftn)]
))

Is this just a matter of esthetics? To some extent, it is. This is where the art comes into
programming. The decomposition of the problem into two functions produces a clean,
crisp, understandable separation of concerns. The program count-female-ancestors
processes the item passed to it. The program count-mother processes the item passed to
it. To accomplish its job, count-female-ancestors uses both a recursive call on itself and
the call to count-mother. Notice that count-mother is the only place where a number
other than zero gets added into the count. The decomposition rule had the effect of
separating out the search criterion from the mechanism that guides the search. The result
is a cleaner, more readable, more "elegant."

Parent-centric Family Trees
So far, our family trees are only of interest to children. All edges run from child to
parent. (In fact, this is natural. Children are the ones who get to study family trees.
Parents usually know more details about their descendants than anyone else wants to
know. The difference between a parent's ancestors and a child's ancestors is fairly
obvious to the child's parents!)

Assume we wanted to reverse the edges in our family tree and create an information
structure that would allow us to ask questions about a person's descendants. What sort of
data-definition would we write?

;; a parent is a structure
;; (make-parent name year eyes children)
;; where name and eyes are symbols, year is a number, and
;; children is a list-of-children
(define-struct parent (name year eyes children)

We also need a data-definition for list-of-children

;; a list-of-children is either
;; –- empty, or
;; –- (cons f r)
;; where f is a parent and r is a list-of-children
;; [Since we used cons, we don't need the define-struct …]

These data-definitions refer to each other. We say that they are mutually dependent or
mutually recursive. [The definition of list-of-children is also self-referential (recursive).]

;; example data
(make-parent 'Tom 1930 'blue

(cons (make-parent 'Ann 1952 'green
 (cons (make-parent 'Mary 1975 'green empty) empty))

 (cons (make-parent 'Mike 1955 'blue empty)
 empty)))

What about a template for these data definitions?

;; (define (f a-parent …)
;; (parent-name a-parent) …
;; (parent-year a-parent) …
;; (parent-eyes a-parent) …
;; (g (parent-children a-parent)) …)

;; (define (g a-loc)
;; (cond
;; [(empty? a-loc) …]
;; [(cons? a-loc) … (f (first a-loc)) … (g (rest a-loc)) …]))

Notice that the number of
children is indeterminate.
With the child tree, the set
of parents was fixed and
small, so a structure made
sense. Here, we use a list.

The template for a mutually recursive data definition contains one template for each
constituent data definition. To reflect the recursion in the data definition, we have added
the calls to f and g. When the template uses a selector function that refers to an instance
of the other data-definition, we have included the appropriate call to the template for that
data-definition. In this way, the template reflects the coupling of the data-definitions.

Let's develop the program count-members which consumes a parent and returns the
number of people in the family tree rooted at the parent.

<and, we ran out of time, probably because I wrote too slowly at the board…>

