
COMP 210, FALL 2000
Lecture 12: Moving Beyond Lists

Reminders:
• Homework assignment due Friday 2/18/00
• Exam will be 2/16/2000, in class–closed-notes, closed-book

Review
1. Introduced non-list information structures with the example of a child-centric family

tree–-that is, a family tree structured from the child's point of vies.
2. Build a program in-family? that checked a symbol for membership in a family tree.

See the posted lecture notes for a correction to what I said about the need for a helper
function in in-family? .

3. Expanded the utility of family trees in two ways–-adding more fields and allowing
flexibility to accommodate unknown information with empty

Discussion of Exam
We spent fifteen minutes answering questions about the exam, about templates, and about
Scheme issues.

Discussion of Newsgroup Remarks
We spent about five minutes talking about a complaint that I received regarding remarks
made on the newsgroup.

Defining a Family Tree, Take 2

;; a ftn is either
;; – empty, or
;; – (make-ftn name mother father year eyes)
;; where name is a symbol, mother and father are ftn, year is a number,
;; and eyes is a symbol
(define-struct ftn (name mother father year eyes))

;; Examples
 empty
 (make-ftn

'Mary
(make-ftn 'Ann empty empty 1950 'blue)
empty
1975
'green)

What does the template for this more complex ftn look like?

(define (f … a-ftn …)
 (cond
 [(empty? a-ftn) …]
 [(ftn? a-ftn) …

(ftn-name a-ftn) …
(f (ftn-mother a-ftn) …) …
(f (ftn-father a-ftn) …) …
(ftn-year a-ftn) …
(ftn-eyes a-ftn) …

]
))

What does the program in-family? look like on this new version of ftn?

;; in-family? : ftn symbol -> boolean
;; Purpose: returns true if symbol is in the family tree
(define (in-family? a-ftn name)
 (cond
 [(empty? a-ftn) false]
 [(ftn? a-ftn)
 (or

(compare-names (ftn-name a-ftn) name)
(in-family? (ftn-mother a-ftn) name)
(in-family? (ftn-father a-ftn) name))

]
))

Develop the program count-female-anscestors: ftn -> number. It should return the
number of female ancestors in the ftn ; a person does not count as their own ancestor.

;; count-female-ancestors: ftn -> num
;; Purpose: consumes a ftn and returns the number of female ancestors
(define (count-female-ancestors a-ftn)
 (cond
 [(empty? a-ftn) 0]
 [else
 (cond

 [(empty? (ftn-mother a-ftn) (count-female-ancestors (ftn-father a-ftn))]
 [else (+ 1

 (count-female-ancestors (ftn-mother a-ftn))
 (count-female-ancestors (ftn-father a-ftn)))])]

))

This is an edited version of what one student did at the board.

