
COMP 210, FALL 2000
Lecture 11: Moving Beyond Lists

Reminders:
• Homework assignment due Friday 2/18/00
• Exam will be 2/16/2000, in class–closed-notes, closed-book

Review
1. Talked about lists with mixed data. More of this on the lab.

Working with Mixed Data

By now you should be comfortable working with lists and with recursion. This gives us
the foundation we need to start designing programs that operate over more complex data
structures. Today, we'll start by working with family trees.

This family tree depicts three generations of a family. Arrows run from child to parent,
so Mary's parents are Ann and Joe, Ann's parents are Susan and Tom, and Pat and Mike
are Ann's siblings.

How might we write a data definition that allows us to represent these family trees in
Scheme? (Recall, last class we used a list to represent recipes.) This is where I think
Computer Science gets fun–-devising new and effective ways to represent complex kinds
of information.

;; a ftn (for family-tree node) is either
;; – a symbol, or
;; – (make-ftn name father mother)
;; where name is a symbol and father & mother are both ftns
(define-struct ftn (name mother father))

;; Examples
'Mary
(make-ftn 'Ann 'Susan 'Tom)
(make-ftn 'Mary (make-ftn 'Ann 'Susan 'Tom) 'Joe)
(make-ftn 'Pat 'Susan 'Tom)
(make-ftn 'Mike 'Susan 'Tom)

Mike

Susan

Pat

Tom

Mary

Ann Joe

Designing Programs for FTNs
What would the template for this ftn contain?

(define (f … a-ftn …)
 (cond
 [(symbol=? a-ftn) …]
 [(ftn? a-ftn) …

(ftn-name a-ftn) …
(f (ftn-mother a-ftn)) …
(f (ftn-father a-ftn)) …]

))

Let's write a program in-family? that consumes an ftn and a symbol and produces a
boolean that indicates whether or not a person with that name is in the family tree.

As a first step, notice that the program will need to compare names. Let's write a helper
function compare-names that maps two symbols into a boolean.

;; compare-names: symbol symbol -> boolean
;; Purpose: return true if the symbols are identical
(define (compare-names n1 n2)
 (symbol=? n1 n2)

Next, we can copy the template over and fill it in.

(define (in-family? a-ftn name)
 (cond
 [(symbol=? a-ftn) (compare-names a-ftn name)]
 [(ftn? a-ftn)

 (or
(compare-names (ftn-name a-ftn) name)
(in-family? (ftn-mother a-ftn) name)
(in-family? (ftn-father a-ftn) name)
)]))

[Actually, the way that you are likely to discover the need for compare-names is by
developing the code. As you develop in-family? , you will discover that it performs the
equality test on names in two places. The fact that it occurs multiple times suggests
strongly that you break it out into a helper function. In that way, if you need to go back
and replace the representation of a name with something more complex–-such as a list of
symbols to represent today's elongated, hyphenated names–-all the changes are confined
to the function compare-names. Without the helper function, these comparisons are
spread across the entire program. Finding them, modifying them, and testing them
becomes a more significant problem. If all of the tests on a two-digit year had been
isolated into a single helper function, or even a couple (for = < & >), the Y2k problem
would have been much easier to fix.]

We can use or to
check all three
possibilities in a
single function
call, producing the
boolean or of the
answers.

This representation of family trees is quite simple. It only includes people's names and
their parent–child relationships. Let's get more realistic. First, we can add more
information, such as year of birth (for age) and eye-color. Second, we should be able to
account for families where the information about an ancestor is unknown–-a common
situation in genealogical research.

How would we revise the data definition for ftn? These two changes are handled
differently. Adding year of birth and eye-color simply adds more fields to the structure.
Making allowance for missing parents is a matter of how we build and interpret the data
structure; we can use empty to represent the missing ancestors and disallow an
unencapsulated symbol as a ftn .

;; a ftn is either
;; – empty, or
;; – (make-ftn name mother father year eyes)
;; where name is a symbol, mother and father are ftn, year is a number,
;; and eyes is a symbol
(define-struct ftn (name mother father year eyes))

;; Examples
 empty
 (make-ftn

'Mary
(make-ftn 'Ann empty empty 1950 'blue)
empty
1975
'green)

What does the template for this more complex ftn look like?

(define (f … a-ftn …)
 (cond
 [(empty? a-ftn) …]
 [(ftn? a-ftn) …

(ftn-name a-ftn) …
(f (ftn-mother a-ftn) …) …
(f (ftn-father a-ftn) …) …
(ftn-year a-ftn) …
(ftn-eyes a-ftn) …

]
))

