COMP 210, Spring 2000
First Exam, Solution Key

Problem 1
o Part a
: area-of-circle: nunber -> nunber
; Purpose: takes the input nunber as the radius of a circle
: and produces the area of that circle
define (area-of-circle R)
(* pi RR)

i Part b

o~ ws ow

ar ea- of -rectangl e: nunber nunber-> nunber
Pur pose: takes a pair of input nunbers and interprets them
as the perpendicular sides of a rectangle. G ven
those "side lengths", it conputes the rectangle's area.
efine (area-of-rectangle sl s2)
(* sl s2))

A-.-.-.-.
O e e -

:: Parts ¢ and d

;; type the expressions into DrSchene and use the stepper to execute
;o them

’

[}
[}
(]

’

Data definitions for the rest of the test

an order is
(make- order nane TM AT SB)
where nane is a synbol & TM AT, & SB are all

efi ne-struct order (nane TM AT SB))

exanpl e orders

Todd ordered 3 Thin Mnts & 2 Ani mal Treasures
(make-order 'Todd 3 2 0)

Timordered 1 of each

(make-order 'Tim1 1 1)

Keith is on a diet

(make-order 'Keith 0 0 0)

alist-of-order is either
- enpty, or
- (cons f r)
where f is an order and r is a |list-of-order
[W will use the Schenme built-in lists, so no
define-struct is needed.]

exanpl e |ist-of-order

The whol e 2nd fl oor crew

(cons (make-order 'Todd 3 2 0)
(cons (make-order '"Tim1l 1 1)

(cons (make-order 'Keith 0 0 0) enpty)))

Problem 2

N\t ws we ow

’
’
’
’
’
’
’
’

o~ ms ows

’

’

d

O = e

’
’
’
’
’
’
’
’

Part a — Tenpl ate for order

(define (... an-order ...)
(... (order-nane an-order)
(order-T™M an- or der)
(order-AT an-order) ...
(order-SB an-order) ...))
Part b

order-boxes : order -> nunber
Pur pose: consunes an order and produces the nunber of
boxes required to satisfy the order
efi ne (order-boxes an-order)
(+ (order-TM an-order)
(order-AT an-order)
(order-SB an-order)

))

Part c

| worked this one two ways, with inexact nunbers ($3.50) and with
rational nunbers (7/2) ... either one is acceptable.
[Note: | renaned that latter version to allow themto co-exist.]

order-price : order -> nunber
Pur pose: consunmes an order and produces the total price of the order,
based on a price of $3.50 for Thin Mnts, $3.75 for Animal
Treasures, & $3.00 for Shortbreads
efine (order-price an-order)
(+ (* (order-TM an-order) 3.50)
(* (order-AT an-order) 3.75)
(* (order-SB an-order) 3.00)

))

this version uses rational nunber, which may be nore
confortabl e than the inexact nunbers, which appear with
the prefix #i...

rational -order-price : order -> nunber

Pur pose: consunmes an order and produces the total price of the order,
based on a price of 7/2 for Thin Mnts, 15/4 for Ani nal
Treasures, & 3 for Shortbreads

(define (rational -order-price an-order)

(+ (* (order-TM an-order) 7/2) ;; could be 7/2
(* (order-AT an-order) 15/4) ;; could be 15/4
(* (order-SB an-order) 3) ;; could be 3

))

Problem 3

A~ w ows

’

N\ et ws owe ow

’

’
’
’
’

Part a — Tenplate for |ist-of-order

(define (f a-loo ...)
(cond
[(empty? a-100) o]

[(cons? a-100)
(first a-100)

(f (rest a-100)) ...]
))
Part b
boxes-for-scout: |ist-of-order -> nunber

Pur pose: consunes a list-of-order and produces the total
nunber of boxes (of all kind) ordered

deflne (boxes-for-scout a-1o00)

(cond
[(empty? a-100) 0]
[(cons? a-1|00)
(+ (order-boxes (first a-100))
(boxes-for-scout (rest a-100)))]

))

Part c

big-order : list-of-order -> |ist-of-order
Pur pose: consunes a list of order and produces a
list containing the subset of those orders
that purchase 6 or nore boxes
efi ne (big-order a-100)

(cond
[(empty? a-100) enpty]
[(cons? a-1|00)
(cond

[(<= 6 (order-boxes (first a-100)))
(cons (first a-l1o00) (big-order (rest a-100)))]
[el se (big-order (rest a-100))]

))

Problem 4

; subtotal : list-of-order synbol -> nunber
; Purpose: consunes a list of order and a synbol that specifies
: one kind of cookie (i.e. 'ThinMnts, 'Aninmal Treasures,
; or 'Shortbreads). It produces a nunber that is the
: total boxes of that kind ordered in the |ist
define (subtotal a-l1o00 flag)
(cond
[(empty? a-100) 0]
[(cons? a-100)
(cond
[(synbol =? ' ThinM nts fl ag)
(+ (order-TM (first a-l1o00)) (subtotal (rest a-l1o00) flag))]
[(synbol =? ' Ani mal Treasures fl ag)
(+ (order-AT (first a-l1o0)) (subtotal (rest a-l1o00) flag))]
[(synbol =? ' Shortbreads fl ag)
(+ (order-SB (first a-1o0)) (subtotal (rest a-l1o00) flag))]
)]

B

))

;7 OF course, you could also pull out the inner "cond" into a hel per
;; function, following the rule discussed in class on Monday 2/14/00
;7 This one is actually cleaner and nore readable ..

; alt-subtotal : list-of-order synbol -> nunber
; Purpose: consunes a list of order and a synbol that specifies
: one kind of cookie (i.e. 'ThinMnts, 'Aninal Treasures,
; or 'Shortbreads). It produces a nunber that is the
: total boxes of that kind ordered in the |ist
define (alt-subtotal a-1o00 flag)
(cond
[(empty? a-100) 0]
[(cons? a-100)
(+ (boxes-by-kind (first a-1o00) flag)
(alt-subtotal (rest a-loo) flag))]

v

))

; boxes-by-kind: order synbol -> nunber
; Purpose: takes an order and a synbol representing a kind of
: cookie (i.e "ThinMnts, 'Aninal Treasures, or
; ' Short breads) and produces the nunber of boxes of
: that kind
define (boxes-by-kind an-order flag)
(cond
[(synbol =? ' ThinM nts flag) (order-TM an-order)]
[(synbol =? ' Ani mal Treasures flag) (order-AT an-order)]
[(synbol =? ' Shortbreads flag) (order-SB an-order)]

o\t s ws we ow

))

Extra Credit

;; Sonmetines, the tenplate you need to use is the enpty tenplate.

;7 In this case, you had all the pieces needed to put this function
;; together--you know the nane field and can use subtotal to fil

;o in the rest of them

;o osunmmarize : list-of-order -> order
;; Purpose: consunes a |ist of order and produces a single order
1 that summari zes the entire |ist.
(define (sumarize a-100)
(make- order 'sumary
(subtotal a-loo ' ThinM nts)
(subtotal a-loo 'Aninal Treasures)
(subtotal a-loo ' Shortbreads))

;; Some of you relied on the tenplate for list-of-order and cane up
7, With this alternative

o alt-summarize : list-of-order -> order
;; Purpose: consunes a |ist of order and produces a single order
1 that summari zes the entire |ist.
(define (alt-sumarize a-100)
(cond
[(empty? a-100) (nmake-order 'sumary 0 0 0)]
[(cons? a-100) (rmake-order 'sunmmary
(subtotal a-loo ' ThinM nts)
(subtotal a-loo 'Aninal Treasures)
(subtotal a-loo 'Shortbreads))

1))

;7 The problemw th this particular solution is that it breaks out

;; the structure of the data-definition (by splitting the analysis

;; into a case for enpty? and anot her for cons?) but doesn't follow
;; the recursion by invoking itself. As of this point in the course,
;; you don't really have the tools to build this one directly. Thus,
;; this solution represented a good attenpt. | gave it 4 out of 5
poi nts.

