
COMP 210, Spring 2000, Homework 5
Due Wednesday, March 15, 2000 at the start of class

Before you start the homework, you should remind yourself of our General Advice,
Advice on Homeworks, and Grading Guidelines. All are available from the class web
site (http://www.owlnet.rice.edu/~comp210).

You do not need to write out data definitions for the various list-of- constructs. We
assume that you can do that part of the problem in your sleep. You must, however, write
down the contract, purpose, and header for each function, provide test data for each
function, and show your testing (three to four tests per function, including trivial inputs).

1. (2 pts) Evaluate (by hand) the following Scheme expressions. Show each step in the
rewriting process.

a. Given (define (fa x)
 (local [(define x 1)] x))

Evaluate (fa 3)

b. Given (define (fb x)
 (local [(define y 2) (define z 3)] (* x y z)))

Evaluate (fb 3)

c. Given (define (fc x)
 (local [(define y 2) (define z 3)]

 (local [(define y 4)] (* x y z))))

Evaluate (fc 3)

2. (2 pts) Write a function member? that takes a symbol s and a list of symbols a-los
and returns true if s is in a-los and returns false otherwise. Note that member? should
call itself recursively with two parameters.

Now, rewrite member? to use a recursive helper function that takes only one
parameter–-a list of symbols l. The parameter s to member? should not be passed
explicitly to the recursive calls in the helper function. Use local in defining the helper
function.

3. (2 pts) Write a function sort that consumes a list of numbers and returns the list of
numbers sorted into ascending order. Your sort function should use a helper function,
insert that inserts a number into a sorted list of numbers. Use local to make the
function insert only available locally. You should use the data definitions and
templates to derive your solution. [Follow the templates!]

4. (4 pts) Develop a program mergesort as another way of sorting a list of numbers.
Your program will reuse the merge program that we wrote in class on Monday. (See
the notes for lecture 16, online.)

Test each function individually, as you complete it.

a) Write a function that takes as input a list of numbers and returns a list of one-
element lists. That is, the input (list 5 4 3 2 1) should become

(list (list 5) (list 4) (list 3) (list 2) (list 1)).

b) Write a function that takes as input a list-of-list-of-numbers and repeatedly calls
merge on successive pairs in the input list. It should return a list-of-list-of -
numbers. For example, the input (list (list 5) (list 4) (list 3) (list 2) (list 1)) should
produce the output (list (list 4 5) (list 2 3) (list 1)). Feeding the latter list into the
function should produce (list (list 2 3 4 5) (list 1)), and using it again on this result
should produce (list (list 1 2 3 4 5)).

c) Write a function that calls the previous function repeatedly, until the list-of-lists
contains no more than one item.

d) Finally, write mergesort using these helper functions. It should take a list of
numbers and return a sorted list of the same numbers.

