
COMP 210, Spring 2000, Homework 4
Due Wednesday, March 1, 2000 at the start of class

Before you start the homework, you should remind yourself of our General Advice,
Advice on Homeworks, and Grading Guidelines. All are available from the class web
site (http://www.owlnet.rice.edu/~comp210).

For this assignment, you should follow all the steps of the design methodology and
include the results of each step as comments or code in the final materials that you
submit.

a. (4 pts) Sammy's Music wants to reorganize its inventory database. Rather than
maintain a list of stock items and assign each album to a single category, the company
wants to maintain a hierarchy of categories. Each category can contain several
subcategories. Each category also contains the albums that fall into that category.
Each album should reside in the most specific subcategory to which it belongs.

a. (2 pts) Develop a data definition for Sammy's new inventory. The new inventory
should maintain the same information about each album as before: title, artist, and
prices and copies for each of cds and tapes. You may re-use data definitions from
homeworks 2 and 3 where appropriate, but you do not need to.

b. (2 pts) Write a program get-all-album-categories, which consumes one of your
inventories and an album title and returns a list of symbols. The symbols in the
output list are the names of all categories and subcategories into which the album
falls.

b. (6 pts) In class, we discussed two data definitions for family trees (reproduced
below). Some programs are easier to write using one data organization rather than the
other. To explore this, write the following program in each of the two definitions

 Write a program find-siblings which consumes a list of family trees and
 a symbol and produces a list of symbols. The symbols in the output list
 are the names of the siblings of the person named in the input symbol.
 You may assume that a name appears at most once in a family.

Be sure to write out the templates for both versions of the family tree, including
the arrows that show the recursion. (You will get 2 points for the templates, 2
points for the program on child-centric trees and 2 points for the program on
family-centric trees.)

Notes: This problem uses a list of family trees so that we may have multiple entry
points into each family, as discussed in class (for example, in the descendant tree on
page 205 of the text, the list would contain the parent structures for Carl, Bettina, and
Fred). As a reminder, here are the two data definitions for family trees (the text
provides sample pictures of both types of trees, on pages 185 and 205, respectively).

 Child-centric family trees

;; A ftn (for family tree node) is either
;; - empty, or
;; - (make-child name father mother year eyes)
;; where name and eyes are symbols,
;; father and mother are ftn, and
;; year is a number

 (define-struct child (name father mother year eyes))

Parent-centric trees

;; A parent is a structure
;; (make-parent name year eyes loc)
;; where name and eyes are symbols, year is a num,
;; and loc is a list-of-children.

(define-struct parent (name year eye-color children))

;; A list-of-children is either
;; - empty, or
;; - (cons f r)
;; where f is a parent and r is a list-of-children

