
1

From Programs to Executions:
An Odyssey in Language Translation

(with examples in Scheme)

Keith D. Cooper

Rice University
Houston, Texas

December 2000

Copyright 2000, Keith D. Cooper

Programs→Executions
June 2000

2

What commands does the “computer” run?

Computer’s instruction set

• Low-level, imperative commands
> Arithmetic operations

> Memory operations

> Control operations

> Location-oriented programming

• We call these operations “assembly-language”

Arithmetic Operations
add r1, r2 => r3
sub r1, r2 => r3
mult r1, r2 => r3
div r1, r2 => r3

Memory Operations
load r1 => r2
store r1 => r2
loadi c1 => r2
copy r1 => r2

Control Operations
branch r1 -> r2
 branchi r1 -> L2

 call -> L1
 return

2

Programs→Executions
June 2000

3

Programming with Machine Operations

(define (summation n)
 (cond [(= n 0) 0]
 [else (+ n

 (summation (sub1 n)))]))

0: loadi 1 ⇒ r0
1: loadi 100 ⇒ r1
2: eq? r1 r1 ⇒ r11

3: load r1 ⇒ r2
4: copy r0 ⇒ r3
5: add r3 r2 ⇒ r3
6: sub r2 r0 ⇒ r2
7: eq? r2 r0 ⇒ r10

8: branch r10 → 10
9: branch r11 → 5
10: loadi 101 ⇒ r11

11: store r2 ⇒ r11

12: stop

This might become, after storage
assignment & translation

100: n
101: result

Assembly programming &
assemblers in COMP/ELEC 320

Programs→Executions
June 2000

4

Understanding How the Computer Works

One valuable tool is simulation

• Write a program that has the
same behavior

• Models behavior of system

• Gives insight into its workings

Simulation is used in many ways

• Design of new systems

• Conduct experiments that are expensive or dangerous

• Train pilots in cases where loss is expensive

Simulating a computer shows us a lot about how it works

3

Programs→Executions
June 2000

5

How Does the Computer Work?

;; an op is a structure
;; (make-op fn arg1 arg2 arg3)
(define-struct op (fn arg1 arg2 arg3))

;; program memory holds 10k operations
(define Prog (build-vector 10240
 (lambda (x) (make-op ‘STOP 0 0 0)))

;; data memory holds 10k “word” of data
(define Data (build-vector 10240

(lambda (x) 0)))

;; the program counter holds the address of the current op
(define PC 0)

Programs→Executions
June 2000

6

How Does the Control Unit Work?

;; control-unit : void -> boolean
;; Purpose: execute the operations in program memory, in
;; sequential order
(define (ControlUnit)
 (local [(define ThisOp (vector-ref Prog PC))]
 (begin
 (set! PC (add1 PC)) ;; update next operation's position
 (cond [(symbol=? (op-fn ThisOp) 'STOP) true]
 [else

 (begin
(FunctionalUnit ThisOp)

 (ControlUnit))])
)))

4

Programs→Executions
June 2000

7

How Does the Functional Unit Work?

;; FunctionalUnit : op -> void
(define (FunctionalUnit AnOp)
 (local [(define f (op-fn AnOp)) (define r1 (op-arg1 AnOp))
 (define r2 (op-arg2 AnOp)) (define r3 (op-arg3 AnOp))]
 (cond
 [(symbol=? f 'ADD)
 (vector-set! Regs r3 (+ (vector-ref Regs r1) (vector-ref Regs r2)))]
 [(symbol=? f 'LOAD)
 (vector-set! Regs r2 (vector-ref Data (vector-ref Regs r1)))]
 • • •
 [(symbol=? f 'EQ?)
 (vector-set! Regs r3 (= (vector-ref Regs r1)(vector-ref Regs r2)))]
 [(symbol=? f 'BRANCH)
 (cond
 [(vector-ref Regs r1) (set! PC r2)] ;; not Regs[r2], but r2 itself
 [else void])]
)))

Complete code on web site

Programs→Executions
June 2000

8

Computers Keep Getting Faster

Processor power versus time, 1980 to 2000

1982 1983.5 1985 1986.5 1988 1989.5 1991 1992.5 1994 1995.5 1997 1998.5 2000

Plot of
Moore’s Law

1980-2000

How did this
happen?

5

Programs→Executions
June 2000

9

They Are Running Faster

The clock frequency of processors has risen
• 1983: 10 MHZ 68020 provided about 1 MIP

• 2000: 500 MHZ PowerPC provides 500 MIPs + 1 GFLOP

• 2000: Pentiums in 700 to 800 MHZ range

High-end chips are breaking the 1 GHZ barrier

All this power has a downside, however
• Power consumption ∝ frequency2

• Heat ∝ power

• Computation needs operands, needs memory

⇒ 10 cycles/operation

⇒ 1 cycle/operation

Programs→Executions
June 2000

10

They Are Also Running More Operations

Programs contain parallelism
• Operations that can execute at the same time

• Can occur at the fine-grained level or on a larger scale

Computers can exploit parallelism
• Increase operations per cycle

• Use more hardware rather than faster hardware

• Many options

> Single chip processor with many functional units

> Custom-built machine with many individual nodes (computers)

> Networks of workstations and/or PCs

6

Programs→Executions
June 2000

11

Single Chip, Many Functional Units

Functional
unit

r0 r1 r2 r63... ...

PCControl Unit

Functional
unit

Functional
unit

Functional
unit

...

Data

Program

• • •

This takes advantage of instruction-level parallelism

Programs→Executions
June 2000

12

Many Processors, Dedicated Interconnect

Multiprocessor Computer

7

Programs→Executions
June 2000

13

Network of Workstations

De-facto parallel
machine exists in most
modern offices !

Programs→Executions
June 2000

14

Going From HLL to ASM

How do we get from a high-level language to
 assembly code for some target machine?

• Write an interpreter in a working HLL
> The base of DrScheme is written in C & C++

> The rest is written in Scheme

> Subject of COMP 311

• Write a compiler for the HLL
> Translate HLL directly to assembly code

> Must run the assembly code

> Subject of COMP 412

HLL
Code

Results

HLL
Code

Assembly
Code

Assembly programming &
assemblers in COMP/ELEC 320

8

Programs→Executions
June 2000

15

Inside a Compiler

• Represent the program in some internal form
(+ a b c) ⇒ (list + a b c)

• Traverse that data structure and generate code

Along the way

• Do most of the things that the interpreter does!

• Plan, when compiler runs, how events will occur when the
program actually runs

• Plan once, execute many times

add a,b ⇒ t1
add t1,c ⇒ t2
print t 1

(list + a b c) ⇒

Chooses names, operations, maps
n-ary operators into binary ops.

Programs→Executions
June 2000

16

Compiler versus Interpreter

• The interpreter manages resources as demands arise

• The compiler must plan such use in advance
> “Planning” involves designing and implementing techniques that

can efficiently manage these issues

> By working “off-line,” issues like naming become easier

> Most decisions can be made in small,constant amount of time

The Benefit

• Management & overhead time incurred once

• Management & overhead time reduced by moving off line

⇒ The running program is faster

9

Programs→Executions
June 2000

17

The Complications of Using a Compiler

Requires the use of more tools

• Editor to enter program text

• Linker to tie compiled code together

• Debugger to relate post-explosion state back to source (possibly)

Environment is (typically) less standardized
• Depends on the libraries of code for “built-in” functionality

• Once we break the process up to allow compilation of parts, we can get
into trouble with inconsistent or incomplete libraries

• The programmer now must keep track of these issues

Welcome to COMP 212 (and beyond)

compile

edit
Link
& run

debug

