
1

From Programs to Executions:
An Odyssey in Language Translation

(with examples in Scheme)

Keith D. Cooper

Rice University
Houston, Texas

December 2000

Copyright 2000, Keith D. Cooper

Programs→Executions
June 2000

2

An Example

Sum the series
n + n-1 + n-2 + … + 1

In Scheme, we might write
(define (summation n)
 (cond [(= n 0) 0]
 [else (+ n (summation (sub1 n)))]))

(summation 3)

How do we really go from (summation 3) to an answer?

2

Programs→Executions
June 2000

3

The Standard Answer

We explain DrScheme’s behavior by saying that it
performs a series of rewriting steps

 (summation 3)
⇒ (cond [(= 3 0) 0]
 [else (+ 3 (summation (sub1 3)))])
⇒ (+ 3 (summation 2))
⇒ (+ 3 (cond [(= 2 0) 0]
 [else (+ 2 (summation (sub1 2)))]))
⇒ (+ 3 (+ 2 (summation 1)))
⇒ (+ 3 (+ 2 (cond [(= 1 0) 0]
 [else (+ 1 (summation (sub1 1)))])))

Programs→Executions
June 2000

4

… a long series of rewriting steps …

⇒ (+ 3 (+ 2 (+ 1 (summation 0)))))
⇒ (+ 3 (+ 2 (+ 1 (cond [(= 0 0) 0]
 [else (+ 0 (summation (sub1 0)))]))))
⇒ (+ 3 (+ 2 (+ 1 0)))

⇒ (+ 3 (+ 2 1))

⇒ (+ 3 3)

⇒ 6

It eventually produces the answer: 6

Is that how it really works? Probably not

Does it matter? Not unless we can tell the difference

The Standard Answer (continued)

3

Programs→Executions
June 2000

5

The Big Lie(s)

Programming languages deal with abstractions
• Infinite precision numbers

• Symbols

• Lists, structs, vectors, trees

• Functions, programs, name spaces (local)

Computers deal with a limited repertoire of simpler ideas

• Finite integers, floating-point numbers (approximate Rn)

• Memory locations

• Small set of fundamental operations (add, sub, mult, div …)

Language implementation must make good on the lies!

Programs→Executions
June 2000

6

What is DrScheme?

Imagine a contract for DrScheme:

DrScheme: program x inputs → results

DrScheme is a program that manipulates programs

In particular, it

• Creates and maintains the Scheme Environment
> Functions, objects, definitions,

> Abstractions like “local” and “define-struct”

• Checks to see that programs are well formed

• Executes programs

DrScheme implements the programming language Scheme

4

Programs→Executions
June 2000

7

Implementing Programming Languages

Two principal ways to “implement” a language

• Interpreter: program x inputs → results

• Compiler: program → program

Interpreter

program

data
results

data

Compiler
program resultsMachine

Code

Programs→Executions
June 2000

8

Inside an Interpreter

• Represent the program in some internal form
(+ 3 4 5) ⇒ (list + 3 4 5)

• Traverse that data structure and produce answers
(list + 3 4 5) ⇒ 12

Along the way

• Manages the name space
> Variables, arguments/parameters, symbols, free variables

• Manages storage (the computer’s memory)

• Manages communication with outside world
> Programmer or user, external files, other programs …

5

Programs→Executions
June 2000

9

The Conceptual View

DrScheme

(define (summation n)
 (cond
 [(= n 0) 0]
 [else (+ n
 (summation (sub1 n)))]))

> (summation 3)
 6

summation

3

6

foldr

map

+

*

- /

Scheme Environment

Rewriting
Engine

1. You enter your code in the definitions window

2. You enter an expression in the interactions window

3. DrScheme rewrites until it has a solution

Behind the scene

Programs→Executions
June 2000

10

What Really Happens?

(define (summation n)
 (cond
 [(= n 0) 0]
 [else (+ n

> (summation 3)
 6

(define (D
rS

chem
e)

 (…
))

• DrScheme is a program that executes,
 or interprets, Scheme programs.
• You know enough to write a simple
 version of this program!

• Scheme Environment only exists
 in the interpreter’s memory and
 the programmer’s imagination

Digital Computer Behind the scene, the computer
runs the program “DrScheme”

6

Programs→Executions
June 2000

11

Functional
unit

r0 r1 r2 r63...

...

...

Data Memory

Program Memory

Registers

PCControl Unit
Operations that make

up programs

Data used by programs

What does this “computer” look like?

Digital Computer

Programs→Executions
June 2000

12

How does it work?

Functional
unit

r0 r1 r2 r63...

...

...

Data Memory

Program Memory

Registers

PCControl Unit

Think of registers & memory
as vectors in Scheme

Think of the functional & control units
as programs that consume commands
& create side effects (set!)

7

Programs→Executions
June 2000

13

Are the commands in Scheme?

Program Memory

Functional
unit

r0 r1 r2 r63...

...

...

Data Memory

Registers

PCControl Unit

cons plus first rest

Such computers have been built

• They have not proven to be cost effective

• More general processors are the rule (today)

Programs→Executions
June 2000

14

What commands does the “computer” run?

Computer’s instruction set

• Low-level, imperative commands
> Arithmetic operations

> Memory operations

> Control operations

> Location-oriented programming

• We call these operations “assembly-language”

Arithmetic Operations
add r1, r2 => r3
sub r1, r2 => r3
mult r1, r2 => r3
div r1, r2 => r3

Memory Operations
load r1 => r2
store r1 => r2
loadi c1 => r2
copy r1 => r2

Control Operations
branch r1 -> r2
 branchi r1 -> L2

 call -> L1
 return

