From Programs to Executions:
An Odyssey in Language Translation

(with examples in Scheme)

Keith D. Cooper

Rice University
Houston, Texas

December 2000

Copyright2000, Keith D. Cooper

An Example

Sum the series
n+n-1+n2+..+1

In Scheme, we might write

(define (summation n)
(cond [(=n0) 0]
[else (+ n (summation (subl n)))))
(summation 3)

How do we really go from (summation 3) to an answer?

Programs- Executions 2
June 2000

The Standard Answer

We explain DrScheme’s behavior by saying that it
performs a series of rewriting steps

(summation 3)
0 (cond [(=30)0]
[else (+ 3 (summation (subl 3)))])

0 (+ 3 (summation 2))
0 (+3(cond [(=20)0]

[else (+ 2 (summation (subl 2)))]))
0 (+3(+2 (summation 1)))
O (+3(+2 (cond [(=10)0]

[else (+1 (summation (subl 1)))])))

Programs- Executions 3
June 2000

The Standard Answer (continued)

... along series of rewriting steps ...

O (+3(+2(+1 (summation 0)))))
O #*#3(*2(+1 (@nd [(=00)0]
[else (+ 0 (summation (subl 0)))]))))
O@EF3H2+1 0)
O#3(+21))
O(H+33)
06

It eventually produces the answér:

Is that how it really worksProbably not
Does it matter?Not unless we can tell the difference

Programs- Executions 4
June 2000

The Big Lie(s)

Programming languages deal with abstractions
* Infinite precision numbers

* Symbols

e Lists, structs, vectors, trees

 Functions, programs, name spaces (local)

Computers deal with a limited repertoire of simpler ideas

* Finite integers, floating-point numbers (approximateRn)
* Memory locations

* Small set of fundamental operations (add, sub, mult, div)..

Language implementation must make good on the lies!

Programs- Executions 5
June 2000

What is DrScheme?

Imagine a contract for DrScheme:
DrScheme: program X inputs results
DrScheme is @arogramthat manipulateprograms

In particular, it

¢ Creates and maintains the Scheme Environment
> Functions, objects, definitions,
> Abstractions like “local” and “define-struct”

* Checks to see that programs are well formed
* Executes programs

DrSchemamplementghe programming language Scheme

Programs- Executions 6
June 2000

Implementing Programming Languages

Two principal ways to “implement” a language
* Interpreter: program X inputs results
program

results

data Interpreter | ——

e Compiler: program- program

program . Machine results
EE— Com pllel’ — >\ code /"
data
Programs- Executions 7

June 2000

Inside an Interpreter

* Represent the program in some internal form
(+345)0 (list+345)

* Traverse that data structure and produce answers
(list +3 4 5)0 12

Along the way
* Manages the name space

> Variables, arguments/parameters, symbols, free variables
* Manages storage (the computer’'s memory)

* Manages communication with outside world
> Programmer or user, external files, other programs ...

Programs- Executions 8
June 2000

The Conceptual View

(define (summation n)

(cond _
[Enoa Rewriting
[else (+ n .

(summation (sub)))])) Engine

> (summation 3)

6 Behind the scene

DrScheme)
Scheme Environment

1. You enter your code in the definitions window
2. You enter an expression in the interactions window
3. DrScheme rewrites until it has a solution

Programs- Executions 9
June 2000

What Really Happens?

« Behind the scene, the computer

Digital Computer
runs the program “DrScheme’

"

(define (surmation n) -~
(cont :
[(=n0)0] =
[dse(+n

_— * DrScheme is arogramthat executes
or interprets, Scheme programs.

* You know enough to write a simple
version of this program!

(swaydsia) auyap)

> (summation 3)
6

* Scheme Environment only exist
in the interpreter's memory and
the programmer’s imagination

Programs- Executions 10
June 2000

What does this “computer” look like?

Digital Computer

5->|r0|r1|r2‘ ’r63| Registers

/ ’ Data used by programs

Functional4—’| ‘ ‘ ‘

’ | Data Memory

unit

0 L]

’ | Program Memory

Control Uni

Programs- Executions
June 2000

Operations that make
up programs

11

How does it work?

§->|ro|rl|r2‘ ’r63| Register

Think of registers & memory
as vectors in Scheme

’ | Data Memory

>Functional4—’| ‘ ‘ ‘ /
/

unit

NN

’ | Program Memory

Control Uni

Programs- Executions
June 2000

Think of the functional & control units
as programs that consume commangds

& create side effects (set!)

12

Are the commands in Scheme?

Pro]ra]ro
: !

’r63| Registers

Functional4—’| ‘ ‘ ‘

’ | Data Memory

unit

A Icons{ pluslfirst‘

’ rest| Program Memory

Control Uni :

Such computers have been built

» They have not proven to be cost effective

» More general processors are the rule (today)

Programs- Executions
June 2000

13

What commands does the “computer” run?

Computer’'dnstruction set

* Low-level, imperative commands
> Arithmetic operations
> Memory operations
> Control operations

>

> Location-oriented programming
* We call these operations “assembly-language”

Arithmetic Operations

Memory Operations

Control Operations

add r1,r2=>r3
sub rl,r2=>r3

load r1=>r2
store rl =>r2

branch r1->r2
branchrl ->1L2

mult r1, r2 =>r3 load c1 =>r2 call >L1
div r1,r2=>r3 copyrl=>r2 return
Programs- Executions

June 2000

14

