;;abrand is a

;; (make-brand type speed seats service)

;; where type is a symbol, and speed, seats, and service
0 are numbers

(define-struct brand (type speed seats service))

;; aplane is a

;; (make-plane tailnum kind miles mechanic)

;; where tailnum is a symbol, kind is a brand

0 miles is a number, and mechanic is a list-of-symbols
(define-struct plane (tailnum kind miles mechanic))

;; a list-of-symbol is either

;5 - empty, or
;; - (cons first rest)
;; Where first is a symbol and rest 1s™adist-of-symbol

;; [No define-struct since this uses cons, first, and rest]

;; a list-of-plane is either

;5 - empty, or
;; - (cons first rest)
;; where first is a plane and rest i3~aJist-of-plane

;; [No define-struct since this uses cons, first, and rest]

;; Example Data

(define brand1 (make-brand 'DC-10 550 282 15000))
(define brand2 (make-brand 'MD-80 505 141 10000))
(define brand3 (make-brand 'ATR-72 300 46 5000))

;; And some planes

(define N1701 (make-plane 'N1701 brand1 0 empty))

(define N3217 (make-plane 'N3217 brand2 100
(cons 'Susan (cons 'Mike (cons 'Pam empty)))
)

(define N1079 (make-plane 'N1079 brand1 3500
(cons 'Mike (cons 'Bubba (cons 'Susan empty)))
)

(define N9824 (make-plane 'N9824 brand3 500
(cons 'Bess (cons 'Felix (cons 'Jane empty)))
)

(define N3141 (make-plane 'N3141 brand3 1000
(cons 'Fred (cons 'Bubba empty))

)
(define JetSetFleet
(cons N1701
(cons N3217
(cons N1079
(cons N9824
(cons N3141 empty))))))

;; just-DC-10s: list-of-plane -> number
;; Purpose: consumes a list-of-plane and returns the number that
5 are DC-10s
(define (count-DC-10s a-lop)
(cond
[(empty? a-1gp) O]
[(cons? a-lop
(cond —_—
[(symbol=? (brand-type (plane-kind (first a-lop))) 'DC-10)
(add1 (count-DC-10s (rest a-lop)))]
[else (count-DC-10s (rest a-lop))])

1) \

;; Just-DC-10s: list-of-plane -> number
;; Purpose: consumes a list-of-plane and returns the number that
5 are DC-10s
(define (count-DC-10s a-lop)
(cond
[(empty? a-lop\ O]
[(cons? a-lop)

(add _
(cond
[(symbol=? (brand-type (plane-kind(first a-lop))) 'DC-10)
1]
[else 0])

(count-DC-10s (rest a-lop))]) |
)

;; A cleaner formulation that uses a helper function because
;; we are going to access two distinct kinds of data (planes
;; and brands)

29

;; First, the helper function

;; Is-DC10: brand - number
;; Purpose: consumes a brand and returns 1 if the brand’s

3 type 1s DC10 and returns O otherwise
(define (Is-DC10 a-brand)

(cond
[(symbol=? (brand-type a-brand) DC10) 1]
[else 0]
)

;; and, the desired program

;; just-DC-10s: list-of-plane -> number
;; Purpose: consumes a list-of-plane and returns the
0 number that are DC-10s
(define (count-DC-10s a-lop)
(cond A
[(empty? a-lop) O]
[(cons? a-lop)
(add (Is-DC10 (plane-brand (first a-lop)))
(count-DC-10s (rest a-lop)))]

_

)

;; Templates

;; for brand

;; (define (... a-brand ...)

;3 (...(brand-type a-brand) ...

0 ... (brand-speed a-brand) ...
0 ... (brand-seats a-brand) ...

:;; ... (brand-service a-brand) ...))

;; for plane

;; (define (... a-plane ...)

;3 (... (plane-tailnum a-plane) ...

;3 ... (plane-kind a-plane) ...

;3 ...(plane-miles a-plane) ...

;; ... (plane-mechanics a-plane) ...))

;; for list-of-symbols
;; (define (f... a-los ...)

;7 (cond
3 [(empty? a-l0s) ...
3 [(cons? a-los) ... (first a-1o0 (f (rest a-los) ...)...]

o))

;; for list-of-planes

;; (define (g ... a-lop ...)

;7 (cond

5 [(empty? a-lop) ...

5 [(cons? a-lop) ... (first a-lopy~-(g (rest a-lop) ...) ...]

o))

Design Methodology

1.

Data Analysis — determine how many pieces of data describe
interesting aspects of a typical object mentioned in the problem
statement; add a data definitions for each kind ("class") of
object in the problem

. Contract, Purpose, and Header — write the basic documentation

for the program

. Test Cases — develop several test cases. Be sure to pick end

conditions on intervals, unusual values, along with a couple that
are normal values with obvious answers that you can easily
check. (e.g., (area 10) = 314.15 mumble)

. Templates — write the templates for each argument that is a

compound object. The template must contain the various
selector functions defined for the object. It serves as a reminder
of what kinds of information we have available. For recursive
structures, indicate the recursive call by drawing an arrow from
the call back to the header.

. Develop the body — use your knowledge of the problem, the

data, and Scheme to fill in the body of the program. This may
involve developing helper functions (especially if the problem
involves a compound object that contains another compound
object).

. Test your program —- either hand evaluate your code on the test

cases from step 3, or use DrScheme to evaluate them.

