
COMP 210, FALL 2000
Lecture 37: More Vectors

Reminders:

♦  Final homework Friday (or Monday).

♦  Exam 3 handed out Friday, due the following Wednesday.  Review
session in class on Friday.

Review
Last class, we introduced the notion of a vector, along with some functions
to manipulate vectors.  In particular, we saw vector, vector-ref, build-
vector, and vector-set! which, taken together, give us the tools to create and
manipulate vectors. We talked about using vectors in an application where
we needed constant time access to any element of the data structure, and we
knew, in advance, the number of elements in the data structure.  Vectors
differ from structures in that we can compute the name of a vector element,
while a structure element must be named explicitly and uniquely.

What about Linear Algebra?
Consider another example.  Vectors are common in mathematics.  A vector
is a k-tuple that specifies some point in a vector space. Two important
operations on vectors in linear algebra (vectors are shown in bold italic
typeface) are

scalar arithmetic : s * v   or  s + i

vector arithmetic : v * w   or  v + w

Scalar arithmetic adjusts each element in the vector by the given number
using the given operation.  Vector arithmetic combines two vectors pairwise
according to the given operation.  Let's write programs to perform scalar and
vector arithmetic:

(define (scalar* a-num a-vec)
  (build-vector (vector-length a-vec)

(lambda (i) (* s (vector-ref a-vec i)))))

Or, more generally:

(define (scalar-arith a-num a-vec an-op)
  (build-vector (vector-length a-vec)

        (lambda (i) (an-op s (vector-ref a-vec i)))))

For vector arithmetic, we need:

(define (vector-arith vec1 vec2 an-op)



  (build-vector (vector-length vec1)
        (lambda (i) (an-op (vector-ref vec1 i) (vector-ref vec2 i)))))

Of course, for real linear algebra, we need multi-dimensional arrays.  In
Scheme, we can build those out of vectors of vectors of vectors …

Another example
Remember our Quicksort program?  It picked a pivot element and then
partitioned the list into a list of elements smaller than the pivot, a list equal
to the pivot, and a list larger than the pivot, and recurred on the smaller and
larger lists.  In our code, we picked the first element in the list as the pivot.

What happened with that code if the elements of the list were already in
order (either ascending or descending)?  The pivot elements were
ineffective, since they split the list into an empty list, the set of repeats of the
first element, and the rest of the list.  It turns out that choosing the pivot
element carefully is the key to avoiding pathological worst case behavior in
Quicksort.  When it is sorting a list, picking a better pivot is expensive.  We
could take the average of the first three elements, but that doesn’t help a lot
with the ordered input.  What we would like to do is to average a couple of
different elements–-the first, the last, and the middle element; or two
elements chosen at random from the set.   If we use an array to hold the set
of elements being sorted, we can do this without significantly increasing the
cost.

One Final Example?
Say that you suddenly found yourself with 6,000,000 ballots to tally in the
presidential election.  Say that you distrusted someone making tally marks
on a sheet of paper, and wanted to write a Scheme program to tally the
results.  Say that you had 10 candidates, because you were in Southern
Florida, where there are many accredited parties and candidates.  How might
you do this tally?

Assume that the votes come in as a list of symbol

   (list ‘Gore “Bush ‘Gore ‘Bush ‘Gore “Bush ‘Nader ‘Buchanan ‘Nobody)

We could build a list of pairs–-name and total, and write a simple pair of
functions.  The first one, GetVotes, would walk the list and call the second
one, RecordVote, on each symbol in the list. RecordVote could walk the
list of pairs and use set-structure! to change the count for the appropriate
name.  This would take time proportional to the length of the list of votes (6
million votes) times the number of candidates (10 candidates).  If this was a
recount, we could speed things up by putting the two candidates who



received most of the votes at the front of the list; if we messed up and put
them at the end, it would be a disaster.

As several people suggested for the ranking example (the International
Tiddlywinks Federation), we could build a binary search tree whose nodes
held the pairs.  This would reduce the search times to log2 10 = 4 probes on
average from 10/2 = 5 on average.

Could we use an array to improve this situation?  Yes, but only if we had a
quick (i.e., in constant time) way to map each of the symbols into a small
integer–- say between zero and nine.   Assume that we have a function h(s)
that consumes a symbol s and produces an integer between zero and nine
that is uniquely associated with that integer.  (Mathematically, we call h a
perfect hash function, but that can wait for COMP 314.)

Given h, we can implement RecordVote quite efficiently.  It becomes

(define Votes (build-vector 10 (lambda(n) 0))

(define (RecordVote asym)
     (local  [(define index  h(asym))]
          (vector-set!  Votes index (add1 (vector-ref Votes index)))
        ))

This uses the vector Votes and the function h to make the process a factor of
five to ten more efficient.

Summary

When should we use a structure, a list, and a vector?

(define-struct fee (a b c))  creates a value with three components
(list `a `b `c) creates a list with three components, but

we can add arbitrary additional elements
(We can also use build-list  …)

(build-list 10 (lamda(n) n))
> (list 0 1 2 3 4 5 6 7 8 9)
(list-ref  (list 0 1 2 3 4 5 6 7 8 9) 7)
> 6 requires 7 recursions….

(vector `a `b `c) creates a vector with three components,
and we cannot add any more elements …

(build-vector 10 (lambda(n) n)
> (vector 0 1 2 3 4 5 6 7 8 9)
(vector-ref (vector 0 1 2 3 4 5 6 7 8 9) 7)



> 6 requires no recursion (is instantaneous)

Both build-list  and build-vector create arbitrarily long aggregate objects,
but the one returned by build-vector has a fixed length, while the one
returned by build-list  can be extended.

If a program inspects or processes all of its elements, use a list.  If it inspects
or processes elements in a seemingly random order (an order dictated by
external numbers), use an array.


