
COMP 210, FALL 2000
Lecture 35: The Search for Identity

Reminders
� The last homework is available online; there are sure to be questions.

Read the newsgroup for updates.
� We will negotiate the deadlines & review dates in class.

Equality

To introduce this subject neatly, it needs to segue from a lecture about some
program that used structures. So, I’m going to back up, mentally, to
Monday’s lecture. Recall in Monday’s lecture that we built an address book
to show set-structure! The address book included a structure, called an entry,
that looked something like

;; an entry is a structure
;; (make-entry name phone)
;; where name is a symbol and phone is a number
(define-struct entry (name phone))

At some point, in working our way through the program update, we
performed the action

(set-entry-phone! (first a-book) ‘7133486013)

and this was purported to change the contents of the particular entry that was
at the head of the list denoted by a-book.

This notion–-that the contents of a variable or a structure are mutable–-leads
to a deep question (that some of us find a fascinating question): when are
two structures or two lists the same? With variables, we can use the Scheme
operator =. With symbols, we can use the Scheme operator symbol=? Can
we ask the same kind of question for structures or lists? (Is there a “list=?”
and what would it mean?)

What if we type

(define x (make-entry ‘keith 7133486013))
(define y (make-entry ‘keith 7133486013))

Are x & y the same? What does that question mean? There are two possible
answers for an entry.

1. Are the structures equivalent? That is, do they have the same
values and the same behavior?

2. Are the two structures implemented with the same object in
DrScheme?

Obviously, x & y have the same shape and the same values, so they are the
same, from a value perspective. We call this extensional equality because
the notion of equality derives (or extends) from the structure’s definition. (If
it walks like a duck, and quacks like a duck …)

Can we tell if x & y are implemented with a single object in Scheme World?
What happens if we say

(set-entry-number! x 12) ?

Does this change x, or does it change both x & y?

What do x and y look like?

draw them on the board –-

As you could guess (from the fact that I am lecturing on the subject),
Scheme provides a mechanism to answer each of these questions.

The first operator, called equal?, tests whether two arbitrary values have the
same internal structure and the same value in every position in that structure.
Thus,

(equal? 4 4)
> true
(equal? ‘a ‘a)
> true
(equal? ‘a ‘A)
> false
(equal? 4 ‘a)
> false

Remember that = and symbol=? had pretty strict contracts.

= : number number � boolean

symbol=?: symbol symbol � boolean

The contract for equal? is more general than either of these.

equal? : alpha beta � boolean

If we try equal? on a more complex example, it does the intuitive thing:
(equal? (make-entry ‘keith 7133486013) (make-entry ‘keith
7133486013))

> true
(equal? (list 1 2 3) (list 1 2 3))
> true
(equal? (list 1 2 3) (list 1 2 4))
> false

The operator equal? tests for identical form and identical values–-for
extensional equality.

But are ‘a and ‘a the same object? What about (list 1 2 3) and (list 1 2 3)?
Scheme provides another mechanism to allow you to test whether or not two
names are implemented by the same object. The operator eq? does this. It
tests for intensional equality. You can use eq? as a tool to understand more
about how Scheme actually stores objects in its memory.

(eq? (list 1 2 3) (list 1 2 3)
> false
(define a (list 1 2 3))
(define b a)
(eq? a b)
> true
(define c (list 1 2 3))
(equal? b c)
> true
(eq? b c)
> false
(set! b c)
(equal? b c)
> true
(eq? b c)

So far, this relies on intuition. Can we make it more concrete? (Yes. Take
311)

To understand this at a level beyond the intuitive requires an understanding
of how Scheme organizes its memory. In the study of programming
languages (and, after all, you have begun the study of programming
languages), we call this the “memory model” of a programming
language.Scheme's memory model contains two main layers, denoted by []
and () below:

 x ---- [] ----------––––-- 'a
 y ---- [] -----------–––-- 4

 an-entry ---- [] ------––––------ () -- (make-entry ‘keith 7135276013)
 alon ---- [] -----------––––- () -- (cons 1 (cons 2 empty))

 variables environment store

The boxes are references to a piece of data. Thus, x is mapped to a
particular box (reference) which refers to ‘a. Similarly, y is mapped to a box
that refers to 4.
Scheme is uniform in its treatment of data, so the way that we’ve
represented the list and the structure are misleading. They contain boxes
that refer to values.

 x ---- [] ----------––––-- 'a
 y ---- [] -----------–––-- 4

 7135276013 <––––|
 ‘keith <––––––––| |

 an-entry ---- [] ------––––------ () -- (make-entry [] [])
 2 <–––––––––––-|

 1 <––––––| |
 alon ---- [] -----------––––- () -- (cons [] (cons [] empty))

So, Scheme creates a mapping from names that you can write in a program
to specific boxes (or references). These are the lines from a variable name to
a box. It also creates and maintains a mapping from specific boxes to
specific values.

To really understand define, set!, set-structure!, you need to see how they
affect the memory model. With this understanding, the distinction between
equal? and eq? becomes clear.

♦ define adds a name to the mapping and makes its box refer to some
specific value. Thus, (define z 17) simply adds a new line to the memory
model.

z –– [] ––––––––––– 17

♦ set! changes the mapping from a name to a box. Thus, (set! y 7) would
create a different line for y

y ––-[] –––––––––––- 7

while leaving behind the value for 4. Does the box for 4 remain? That’s
a good question. If any other name is mapped to 4, then it remains. This
includes an implicit name inside some structure.

♦ set-structure! Changes the value inside the structure. It replaces the box
inside the structure with another box, but leaves the mapping of names to
boxes intact. Thus, (set-entry-phone! An-entry 7133486013) creates the
memory model

 7135276013
 7133486013 <––––|
 ‘keith <––––––––| |

 an-entry ---- [] ------––––------ () -- (make-entry [] [])

Some values are represented uniquely. For example, numbers always have
the same name (4 is 4), so any use of 4 refers to the same box. Similarly
with symbols.

With this new understanding, we can explain eq? It just tests to see whether
or not two variables refer to the same box. On the other hand, equal? is a
recursive function that tests, at each level, whether or not the layout is the
same, and the values are the same.

