
COMP 210, Fall 2000
Lecture 33 – From Data Hiding to Data Abstraction

Announcements
1. The next homework will not be available until Friday.
2. Missionaries & Cannibals is done. Long live the cannibals.
Moving on …
Finish the example of the address book.

So, you finish typing in all of the add-to-address-book calls to enter all of
your friends’ names into the address book. Your roommate asks to use your
computer, and starts writing a Scheme program. Unfortunately, she begins
by typing

(define address-book empty)

What happened to your work? It’s gone. Destroyed. Since set! is
irrevocable, you’ve lost the entire address book. We’ll assume that your
roommate did this non-maliciously. However, you can easily see how
someone could use set! to deliberately change your data–-from destroying
your address book or checkbook records to changing the amount of money
you think you have in your account, to ….

The problem arises because set! really does destroy the value associated
with a name (by replacing it with a new value). This being COMP 210, we
should design our programs to avoid such misteaks (or abuses). This
suggests the following simple rule:

Only set! variables declared in a local.

This point arose briefly when we looked at building a memo function. We
want to hide state variables inside the functions that use them. So far, we’ve
talked about this as an issue of style. It is also an issue of security.

We want to hide our persistent data structures inside a local. But what about
our address book example? How can we hide address book in such a way
that all three programs, lookup, add-to-address-book, and update-
address-book, can access it? What options do we have?

1. We can put address book in each function. That cannot work, since they
will be different address books. Each will have a private copy, and they
won’t communicate.

2. Put the three functions that access address book inside a single wrapper
function. This seems unlikely to work; how can we access the functions
if we hide them in a local? Let’s explore this approach a little more.

(define address-interface
 (local [

(define address-book empty)
(define (lookup-number name)
 (local [(define matches (filter (lambda(an-entry)

 (symbol=? name (entry-name an-entry)))
 address-book))]

 (cond [(emtpy? matches) false]
 [else (entry-number (first matches))])))

(define (add-to-address-book name num)
 (begin

(set! address-book
 (cons (make-entry name num) address-book))
true))]

(what should it return?)
))

We could have it return a list of functions, as in

(list lookup-number add-to-address-book)

This is a bad solution for three reasons:

1. It doesn’t scale. As we go from two programs to sixteen, or twenty, or
twenty-four, the return list gets long and picking it apart gets complex.
The user needs to remember whether the function they want is fifteenth
or sixteenth on the list, and then needs to pick the list apart the right way
to find the function.

2. It has a bad interface. To use the address book, you must know about all
of the functions and where they are in the list. The customer ought to be
able to use the address book without learning everything there is to know
about the address book.

3. Why should this function return a list of functions? That seems like an
incredibly arbitrary decision. We didn’t know what else to do, so we
wrote down a list of programs? That sort of design practice is contrary to
all the claims that we’ve made for COMP 210 having a rational way to
design programs!

If address-interface is going to return programs, it should return one
program. What if we make it take a symbol as an argument and return a
specific function as its result–-depending on the symbol. Thus, we could
make it return lookup-number for the symbol ‘lookup , and add-to-

address-book for the symbol ‘add. To do this, we should tack onto the
local some code like

(lambda(service)
 (cond [(symbol=? service ‘lookup) lookup-number]

 [symbol=? service ‘add) add-to-address-book]))

[Notice that we didn’t use else in the cond clause for ‘add because we will
undoubtedly want to add more services at a later time.]

With this addition, calling (address-interface ‘add) returns the function
add-to-address-book. We can use address-interface to access the two
programs.

We can define some names to hold these functions

(define lookup-an-address (address-interface ‘lookup))
(define add-an-address (address-interface ‘add))

(lookup-an-address ‘Keith)
� false
(add-an-address ‘Keith 7133486013)
� true
(lookup-an-address ‘Keith)
� 7133486013

The other way that we can use address-interface is to invoke the interface
directly each time, as in

((address-interface ‘lookup) ‘Keith)
� false
((address-interface ‘add) ‘Keith 7133486013)
� true
((address-interface ‘lookup) ‘Keith)
� 7133486013

This looks awful, but works just fine. There are times when you might want
to use this kind of interface. We’ll talk about that later. For now, trust me.

How hard is it to extend this address book package? Simple. You just add
the new program to the local, and add an appropriate clause to the cond.
The hardest part is implementing the new function, not adding it to the
interface function.

This approach encapsulates the data inside a function. All of the data is
hidden. None of it is directly accessible to the user; the data can only be
seen when accessed using one of the supplied functions. (In this case,
‘lookup and ‘add.)

This notion of hiding data, or encapsulating it, or providing an abstract data
type, is a fundamental idea that computer scientists have played with for
years. In particular, disciples of software engineering have long advocated
design strategies that limit access to data, that provide access functions
similar to lookup and add, and that prevent unexpected modification
(usually by hiding the name of the data from outsiders). This style of
program design goes back a long way in the literature of computer science
(if anything that is only forty years old has a “long way” to go!)

