
COMP 210, FALL 2000
Lecture 32: More fun with set! and set-structure!

Reminders

Review
We went over set! again, and revisited the example from lecture 30 (and,
apparently, from lab) that confused people. It involved hiding a variable
with a local that returns a lambda expression. We talked about some of the
ways that set! makes analysis and understanding of programs harder.

We talked about using begin to do printf -style debugging.

More set!
Okay. We know how to change a single value. Let’s work with that idea for
a little bit today, in preparation for introducing data structures that need set!
and begin. Recall that begin allows us to group together a set of
expressions. It evaluates each of the expressions in normal fashion, and the
value of the entire begin expression is simply the value of its final
expression.

The begin construct is only useful if we have expressions whose effects deal
with something other than returning a value. (Otherwise, there is no reason
to put something in any slot of the begin except the last slot!) Thus, begin is
useful with set! precisely because set! has an outside effect–-it changes the
value of some variable.

Consider the following trivial example:

(define n 5)
(begin
 (set! n (add1 n))
 n)

If we evaluate this, the define expression creates an object named n and
gives it the value five. Evaluating the begin expression first evaluates the
set!, which sets n’s value to 6, and then evaluates n, which returns 6.

What happens with this piece of code:

(define x 3)
(define y 4)
(begin
 (set! x y)
 (set! y x))

The defines create objects x & y that have the values 3 & 4, respectively.
The begin expression looks like it should swap those values. However,
that’s not what happens.

<hand evaluate the expression>

Contrary to all the intuitions that we’ve built up over the past twelve weeks,
this does not interchange the values of x & y. The first set! changes x’s
value by overwriting it with y’s value. The second set! takes the value of x
(which is now identical to the value of y) and uses it to overwrite the value
of y. Thus, after executing the begin, x has the value of 4, as does (surprise)
y. The net effect is the same as if we had just written two defines that set
them to 4, or if we had never executed the second set!

Can we write a program swap: number number ���� void that takes two
numbers and swaps their values? This should take less than two minutes.

;; swap: number number � void
;; Purpose: interchange the values of the argument numbers
(define (swap x y)
 (local [(define temp x)]
 (begin

 (set! x y)
 (set! y temp))))

This program uses a variable temp to preserve the value of x while it
overwrites x with y’s value. Then, it takes the preserved value (x’s old
value) and assigns it to y. Because the expressions inside the begin execute
in sequential order rather than concurrently (at the same time, or in parallel),
we need an extra place to hide one of the values.

(Can you think of a way to do this without a temporary value? Hint: look up
the logical function exclusive-or in a textbook for computer organization or
computer architecture.)

But does this work? No, it does not work. If we execute it using DrScheme,
we get the following behavior:

(define a 5)
(define b 6)
(swap a b)
a
> 5
b
> 6

Why? Remember our rewriting rules. When we rewrite (swap a b), what
happens? The rewriting engine replaces any occurrences of a and b in the
body of swap with their respective values. Does this mean that the set!
expressions inside the body actually change the values of the constants?

What happens if we use the value of x again inside the value of swap?

;; swap: number number � void
;; Purpose: interchange the values of the argument numbers
(define (swap x y)
 (local [(define temp x)]
 (begin

 (set! x y)
 (set! y temp)
 x)))

If we use DrScheme to evaluate this version of swap, we get the following
results.

(define a 5)
(define b 6)
(swap a b)
> 6
a
> 5
b
> 6

Swap returns 6–-the value of x, which is bound to a–-but outside swap the
value of a remains unchanged. How can this happen? It’s almost as if we
changed the values associated with the constants. However, if we ask
DrScheme to evaluate (write 6) inside the body of swap, DrScheme gets that
correct. Similarly, if we ask DrScheme to evaluate the expression

containing just the number 6–-outside the body of swap–-it gets that correct.
What happened?

This simple little program exposes one way in which the rewrite model, as
explained this far, does not quite match the implementation in DrScheme. In
fact, DrScheme implements it correctly. The rewrite model, as explained so
far this semester, is a simplified version of reality. [Until we had set!, we
could not tell the difference!] What really happens when it evaluates (swap
a b) is that DrScheme creates new objects for the parameters x & y inside
swap, and copies the value from a into x and the value from b into y. This
completely explains the behavior that we have observed. The effects that we
have seen from set! are both correct and appropriate–-maybe even intuitive–-
once you know what really happens.

Again, set! changed the nature of computation. We need a more
sophisticated model of the rewriting process to account for this brave new
world.

An Example for set-structure!

Consider implementing an online address book. It needs at least two
features–-you must be able to insert new addresses and you need to be able
to look up a name and get back the phone number. We can represent
addresses with a simple structure that has two fields.

;; An entry is a structure
;; (make-entry Na Nu)
;; where Na is a symbol and Nu is a number
(define-struct entry (name number))

;; address-book : list of entry
;; keep track of the current address book entries
(define address-book empty)

Now we need two functions

;; lookup-number : symbol address-book � (number or false)
;; Purpose: returns the phone number associated with the symbol,
;; or false if the symbol is not found
(define (lookup-number name) ...)

;; add-to-address-book : symbol number � true
;; Purpose: adds the given name & number to the address book
(define (add-to-address-book name phone) ...)

Can we write down the test data for these programs? It is somehow more
complex than the cases that we have seen in the past. If we try

(lookup-number ‘Todd)

the answer depends on what has happened since we last clicked the execute
button in DrScheme. If we have already executed the expression

(add-to-address-book ‘Todd 7135551212)

then the call to lookup-number should return 7135551212. If we have never
added ‘Todd to the address book, then it should return false.

To write down something that has definite results, we need a sequence of
calls. For example, we can state that the sequence

(add-to-address-book ‘Keith 7133486013)

(lookup-number ‘Keith)

should always have the same results. The call to add-to-address-book returns
true, and the call to lookup-number returns 7133486013. For programs that
have persistent internal state, we need to write more complicated test data
that ensures some knowledge of what is preserved in that internal state and
then uses that knowledge for testing.

Both of these programs are pretty straight forward:

;; lookup-number : symbol � (number or false)
;; Purpose: returns the phone number associated with the symbol,
;; or false if the symbol is not found
(define (lookup-number name)
 (local [(define matches

 (filter (lambda (an-entry)
 (symbol=? name (entry-name an-entry)))
 address-book))]

 (cond
 [(empty? matches) false]

 [else (entry-number (first matches))])))

;; add-to-address-book : symbol number � true
;; Purpose: adds the given name & number to the address book
 (define (add-to-address-book name num)
 (begin
 (set! address-book
 (cons (make-entry name num) address-book))
 true))

Now, this still is COMP 210. Whenever we write a program that changes
the value of a variable using set! (or set-structure!), we must document what
those changes will be. Thus, we add a comment to the program, below the
purpose, that describes any effects that the program has on variables that are
defined outside of it. For example

;; add-to-address-book : symbol number � true
;; Purpose: adds the given name & number to the address book
;; Effect: changes the value for address book to include an entry for
;; name
 (define (add-to-address-book name num)
 (begin
 (set! address-book
 (cons (make-entry name num) address-book))
 true))

In this case, the effect comment is almost redundant, given the purpose.
What would you write for the effect in the function mystery that we wrote
earlier? The effect can be subtle and not obviously related to the function’s
purpose.

What happens when someone moves? How do we update the address book?
We need a function update that takes a name and a number and changes the
phone number for that name. How could you write this?

The classic approach, from the days when we thought primarily about
structural recursion, would be to rebuild the phone book around a new entry
for the person who moved. This would require searching through the phone
book for the entry corresponding to name and rebuilding the list on the way
back out of the recursion.

Leave room for
Effect comment

;; update-address: symbol number � void
;; Purpose: given a name and number, updates the phone number
;; for that name
(define (update-address name num)
 (local [(define updated-book

 (map (lambda (entry)
 (cond

 [(symbol=? (entry-name entry) name)
 (make-entry name num)]

 [else entry]))
 address-book))]

 (set! address-book updated-book)
))

There is, however, reason that you might not want to do it that way.
Efficiency. If your address book approaches the size of the White Pages™
for Houston, you might want to avoid building and rebuilding it every time
some customer moves. To let you build this more efficient version, Scheme
includes a couple of functions for modifying the elements of a structure.

When we defined entry, the function define-struct also created

set-entry-name! : entry symbol � void

set-entry-number!: entry number � void

These both behave like set!, except that they apply to elements of an object
that is, itself, an entry. Thus, the sequence

(define e1 (make-entry ‘Keith 7135276013))
e1
> (make-entry ‘Keith 7135276013)
(set-entry-number! e1 7133486013)
e1

>(make-entry `Keith 7133486013)

Using set-structure!, how can we write update-address?

;; update-address: symbol number � void
;; Purpose: given a name and number, updates the phone number
;; for that name
;; Effect: changes the phone number stored with the given name
;; in address book
(define (update-address-book! name new-num)
 (local [(define (helper! a-book)

 (cond [(empty? helper) void]
 [else
 (cond

[(symbol=? name
 (entry-name (first a-book)))

 (set-entry-phone! (first a-book) new-num)]
[else (helper! (rest a-book))])]))]

 (helper! address-book)))

Notice that this version of update-address does not use set! at all. It does not
need to change the global variable address-book, because it changed one of
the entries inside address-book directly. (The earlier version built a whole
new address book to incorporate the change.)

