
COMP 210, FALL 2000
Lecture 28: Converting to Use an Accumulator

Reminders:

1. Missionaries & Cannibals due 15 November 2000. Get started.

2. Exam results: they’re graded, they’re available.

Review
We wrote a program that reverses a list. Again, the first version was
inefficient, because it involved passing the value returned from one recursive
procedure to an invocation of another recursive procedure. This led to a
COMP 210 rule of thumb:

Consider using an accumulator if the program processes the
return value of a recursive call with another recursive call

Back to Reverse
We could go ahead and write our reverse with an accumulator, but you’ve
done that in lab. Instead, we will use this well understood program as an
example for how to transform the inefficient solution based on structural
recursion into one that uses an accumulator to improve its efficiency.

You know by now that we want to keep the interface to reverse intact–-both
for the sake of programs that already use reverse and to ensure that we pass
the accumulator the correct initial value. Thus, you should be able to guess
the basic skeleton for reverse:

;; reverse: list of alpha � list of alpha
;; Purpose: constructs the reverse of a list of items
(define (reverse aloa)
 (local [(define (rev aloa accum)

 (cond
[(empty? aloa) …]
[(cons? aloa)

… (rev (rest aloa) …
 (first aloa) .. accum …)]))]

(rev aloa …)))

Notice that the template for rev differs from our classic list template. We’ve
moved the use of the first element of aloa into the recursive call. (In the
classic list template, it occurs before the recursive call.) We’ve also added
accum to that call as a parameter. Why? We know, from our extensive

experience, that rev will probably combine (first aloa) with accum to form
the new accumulator for the recursive call on rev.

We would like to think that we can simply fill in the rest of the body of the
program from the template. Unfortunately, it’s a little more complex than
that. We need to figure out what the accumulator holds. (Otherwise, its
hard to figure out how to use it and how to generate a new accumulator from
the old one!) Before filling in the template, we need to answer these
questions, AND, in true COMP 210 fashion, write down a statement that
documents the contents of the accumulator. [Without such a statement, it
becomes quite hard to understand a complex, accumulator-based program.]
This definition for the accumulator gets written (on your homework, on
tests, in every program you develop) immediately above the definition of the
function that uses the accumulator.

;; reverse: list of alpha � list of alpha
;; Purpose: constructs the reverse of a list of items
(define (reverse aloa)
 (local [;; accum: contains the reversed list of items in aloa that

 ;; precede alist
 (define (rev alist accum)
 (cond

[(empty? alist) …]
[(cons? alist)

… (rev (rest alist) …
 (first alist) .. accum …)]))]

(rev aloa …)))

The comment should accomplish two things. It should describe the type of
the accumulator value (so that we can write code) and it should describe the
useful property of the accumulator on which the program relies. In this case,
the comment makes it clear that accum is a list of items derived from aloa
(� it is a list of alpha), and that, on each call to rev, accum holds the reverse
of that part of aloa that has already been processed and discarded (to form
alist).

This property is an invariant that holds before and after each call to rev.

Now, we can fill in the rest of the program.

;; reverse: list of alpha � list of alpha
;; Purpose: constructs the reverse of a list of items
(define (reverse aloa)
 (local [;; accum: contains the reversed list of items in aloa that

 ;; precede alist
 (define (rev alist accum)
 (cond

[(empty? alist) accum]
[(cons? alist)

… (rev (rest alist) …
 (cons (first alist) accum))]))]

(rev aloa empty)))

So, what was the process:

1. Write the structural recursion version
2. Write down the template for an accumulator version, preserving the

interface and hiding the accumulator version inside a local. [This
allows us to initialize the accumulator in a safe and certain fashion.]

3. Decide what the accumulator should hold and write down a comment
that documents the accumulator’s type and states the invariant on
which code relies for correctness.

4. Fill in the details.

Yet Another Example
Consider the program sum that computes the sum of a list of numbers. Can
we write an accumulator version? Is there a reason to do so?

;; sum: list-of-number � number
;; Purpose: computes the sum of all numbers in the list
(define (sum alon)
 (cond [(empty? alon) 0]

 [(cons? alon) (+ (first alon) (sum (rest alon)))]))

Notice that this doesn’t have the case of passing the result of one recursion
to another recursion. Since this is lecture, it should be a big hint to you that
there might be other reasons to use accumulators. [Other than “the professor
wants us to work another trivial example.”] We write down the skeleton:

Both are list of alpha

;; nsum: list-of-number � number
;; Purpose: computes the sum of all the numbers in a list
(define (nsum alon)
 (local [;; accum:

 (define (nsum-accum alon accum)
 (cond [(empty? alon) …]

 [(cons? alon)
(sum-accum (rest alon)

… (first alon) … accum …)]))]
(nsum-accum alon …)))

Then, we fill in the rest of the code and comments

;; nsum: list-of-number � number
;; Purpose: computes the sum of all the numbers in a list
(define (nsum alon)
 (local [;; accum: contains the sum of all numbers in the original list

 ;; that precede the current alon
 (define (nsum-accum alon accum)
 (cond [(empty? alon) accum]

 [(cons? alon)
(sum-accum (rest alon)

(+ (first alon) accum))]))]
(nsum-accum alon 0)))

Is this example any better (or any different) than the original version? Both
perform essentially the same amount of work.

(sum (list 2 5 3 7))
= (+ 2 (sum (list 5 3 7)))
= (+ 2 (+ 5 (sum (list 3 7))))
= (+ 2 (+ 5 (+ 3 (sum (list 7)))))
= (+ 2 (+ 5 (+ 3 (+ 7 (sum empty))))))
= (+ 2 (+ 5 (+ 3 (+ 7 0))))
= (+ 2 (+ 5 (+ 3 7)))
= (+ 2 (+ 5 10))
= (+ 2 15)
= 17

(nsum (list 2 5 3 7))
= (nsum-accum (list 2 5 3 7) 0)
= (nsum-accum (list 5 3 7) 2)

= (nsum-accum (list 3 7) 7)
= (nsum-accum (list 7) 10)
= (nsum-accum empty 17)
= 17

The evaluations have different shapes (when they are written out). The
structural version builds up a series of pending additions until it hits empty,
then performs all of the additions on the way back from the call. After each
recursive call finishes, an addition is performed inside the incarnation of the
function that initiated the call. The accumulator version simply and directly
returns the result of the recursive call, so it doesn’t build up this context of
pending computation. The hand evaluation is simpler (and easier to
understand). Does it perform any fewer additions? NO.

However, this can be more efficient to execute. Imagine a list of 10,000
numbers, or 10 million numbers. The space required to hold this pending
context can grow quite large, to the point where it can exhaust the memory
resources available in your machine. The accumulator version avoids
stacking up this pending context, so it side-steps the issue.

