
COMP 210, FALL 2000
Lecture 25: Graphs, Paths, and Search

Reminders:

1. No homework due Wednesday.  Next homework will be available this
Wednesday.

Review

1. We talked about termination conditions.  A critical point was that every
generative recursion program must contain a termination argument after
the Contract and Purpose.  We saw several examples of termination
arguments.

2. We started looking at the route discovery problem for JetSet air.  It is an
example of a backtracking problem that will require an accumulator.
(This lecture’s subject)

Another Kind of Problem–-a graph problem

See lecture notes for Lecture 24 for the data definitions and the code.

How does find-flights work?  It employs a common algorithmic technique
called backtracking.  It tries a potential solution. If that solution does not
work, we go back and try another possible solution, and another, and
another, until one of two things happens.  Either we find a solution, or we
exhaust the possibilities.

What’s the termination argument for find-flights?  Each recursive call looks
for a route that uses fewer flights.  Eventually, each path must end in the
finish city, or the city has no outbound flights.  [This is an oddity of the way
we have formulated the route map, but bear with me for a day or two.]

This program works fine on our initial route map.

Work (find-flights ‘Houston ‘Memphis rm)

What if we add a flight from ‘Dallas to ‘Houston?

 (define new-routes
   (list (make-city-info  ‘Houston   (list ‘Dallas ‘NewOrleans))

(make-city-info ‘Dallas      (list  ‘Houston ‘LittleRock
‘Memphis))

(make-city-info  ‘NewOrleans (list ‘Memphis))
(make-city-info ‘Memphis  (list ‘Nashville)) ))

What happens when we try



(find-flights ‘Houston ‘Memphis new-routes)  ?

Let’s write down the series of calls that occur.

(find-flights ‘Houston ‘Memphis new-routes)
(find-flights-for-list (list ‘Dallas ‘NewOrleans) ‘Memphis new-
routes)
(find-flights ‘Dallas ‘Memphis new-routes)
(find-flights (list ‘Houston ‘LittleRock ‘Memphis) ‘Memphis
new-routes)
(find-flights ‘Houston ‘Memphis new-routes)
… and so on for quite a while …

We ended up with a non-terminating evaluation (or an infinite loop).  What
happened?

First, our termination condition is wrong.  It assumes that the route-map has
no cycles–ways that we can fly from a to b and from b to a.  In our new
route-map, we have a cycle (‘Houston to ‘Dallas and ‘Dallas to ‘Houston).
This clearly causes a major problem with the program.  Thus, our original
program only works on route-maps that have no cycles (or loops, or
strongly-connected components, or …)

Why does it break when it confronts a cycle?  Because it has no recollection
as to which cities it has already tried.  Each recursive call is independent of
all the others.  If the program is to operate correctly on route-maps (or s) that
have cycles (called cyclic graphs), it will need to remember all of the cities
that it has already tried (or visited)

One way to handle this problem is to add a new parameter to find-flights that
stores the cities already visited (as a list, naturally).  Then, find-flights can
check the list of already visited cities to avoid redoing work (and hitting a
case that causes an infinite recursion).

That modification looks like –- see the slide –-

What should the initial argument passed to visited be?  It must be empty.
Passing it other values can cause the program to malfunction.  For example,
if you started it with a list of all the cities in the route map, it would never
find any routes except the trivial ones.



Using this on routes2, we find that it terminates without hitting the infinite
recursion–-our addition of memory allowed it to prune its search when it
started to run over parts of the graph that it had already visited.

This also produces a much simpler termination condition.  Because it knows
about its own history, find-flights will only search outward from a given city
once.  Thus, as long as the route map is finite, the search will terminate.
[Simple, beautiful termination argument!]

So what is this parameter visited?  In COMP 210, we call this kind of
parameter an accumulator.  It accumulates information over the course of
the computation and lets the program have access to that information.  In
effect, it provides the function with a record of where it has been (and,
perhaps, the results of some of those earlier computations).  The next several
classes will look at aspects of designing programs with accumulators.  You
should also read the material on accumulators in the book.

There is one distasteful aspect of the way that we used visited to fix find-
flights.  To cure what was, in essence, a design flaw in the program, we
changed its contract by adding an extra parameter.   Can we avoid this
problem?  Certainly.  We can make the new version of find-flights be a
helper function with a new name, such as fixed-find-flights, and rewrite
find-flights so that is simply invokes fixed-find-flights with the extra
argument.  This arrangement has the advantage that it allows us to ensure the
correct initial value for the parameter visited.

This is a great example of a place where we can use local to hide the entire
mess.  We can rewrite find-flights so that it defines fixed-find-flights,
direct-cities, and find-flights-for-list inside a local.  What parameters can
we ellide at that point?  (At least the route map and the destination city!)

Another Example
Let’s write a program reverse that consumes a list (of alpha) and produces a
list (of alpha) that has the same elements in the reverse order.  That is, the
first element of the input becomes the last element of the output.  Again,
we’ll start with a version based on structural recursion.

;; reverse: list-of-alpha � list-of-alpha
;; Purpose:  constructs the reverse of a list of items
(define (reverse aloa)
    (cond
        [(empty?  aloa)  empty]
        [(cons? aloa)

(make-last-item (first aloa) (reverse (rest aloa)))]))



;; make-last-item:  alpha  list-of-alpha  � list-of-alpha
;; Purpose:  adds an element to the end of a list
(define (make-last-item  an-elt   aloe)
    (cond
        [(empty?  aloe)  (list an-elt)]
        [(cons?  aloe)     (cons (first aloe)

         (make-last-item an-elt (rest aloe)))]))

What happens on a call to reverse?

(reverse (list 1 2 3))
= (make-last-item 1 (reverse (list 2 3)))
= (make-last-item 1 (make-last-item 2 (reverse (list 3))))
= (make-last-item 1 (make-last-item 2 (make-last-item 3 (reverse
empty))))
= (make-last-item 1 (make-last-item 2 (make-last-item 2 empty)))
… and then it starts returning…

Again, to process all of these nested calls to make-last item, we will end up
traversing the end of the original list many times.  This begins to look like
the last example, right down to the fact that it seems to waste a lot of
computation.

Can we use an accumulator to simplify the program?  Compare the structural
version of available-days to the structural version of reverse.  Notice that
they both pass the balue returned by a recursive call to another recursive
procedure.  This is precisely what gives rise to the kind of quadratic
behavior that we observed when we hand evaluated the examples.   It gives
rise to a simple rule for when to consider using an accumulator.

Consider using an accumulator if the program processes the
return value of a recursive call with another recursive call

Next lecture, we’ll look at a process for transforming a program based on
structural recursion into one that uses an accumulator, provided that the
original program fits our rule.


