
;; hi-lo: number number � number
;; Purpose: consumes the endpoints of an interval and finds
;; the number hidden by guess. Uses a strategy
;; called binary search to make this efficient.
(define (hi-lo lo hi)
 (local [(define midpoint (truncate (/ (+ lo hi) 2)))

 (define answer (guess midpoint))]
 (cond
 [(symbol=? answer midpoint) midpoint]
 [(symbol=? answer ‘higher) (hi-lo midpoint hi)]
 [(symbol=? answer ‘lower) (hi-lo lo midpoint)]))

;; hi-lo: natnum natnum � natnum
;; Purpose: given low & high, return the hidden number in
;; the interval [low, high]
(define (hi-lo lo hi)
 (cond [(symbol=? (guess hi) ‘equal) hi]

 [else
 (local [(define mid (truncate (/ (+ lo hi) 2)))

 (define answer (guess mid))]
 (cond
 [(symbol=? answer ‘equal) mid]
 [(symbol=? answer ‘higher) (hi-lo mid hi)]
 [(symbol=? answer ‘lower) (hi-lo lo mid)]

)
)

]
))

;; hi-lo: int int -> int
;; Purpose: given low & high, return the hidden number
;; in the interval [low, high]
(define (hi-lo lo hi)
 (local [(define mid (truncate (/ (+ lo hi) 2)))
 (define answer (guess mid))]
 (cond
 [(symbol=? answer ‘equal) mid]
 [(symbol=? answer ‘higher) (hi-lo (add1 mid) hi)]

 [(symbol=? answer ‘lower) (hi-lo lo (sub1 mid))]

)

))

A city is a symbol.

;; The information for a city can be represented as a structure
;; (make-city-info name dests)
;; where c is a city (symbol) and dests is a list of symbole
(define-struct city (name dests))

;; A route-map is a list of city-info
(define routes
 (list (make-city-info ‘Houston (list ‘Dallas ‘NewOrleans))

(make-city-info ‘Dallas (list ‘LittleRock ‘Memphis))
(make-city-info ‘NewOrleans (list ‘Memphis))
(make-city-info ‘Memphis (list ‘Nashville))))

;; find-flights: city city route-map � (list of city) or false
;; Purpose: create a path of flights from start to finish or return false
(define (find-flights start finish rm) …)

Examples:
(find-flights ‘Houston ‘Houston routes)
= (list ‘Houston)

(find-flights ‘Houston ‘Dallas)
= (list ‘Houston ‘Dallas)

(find-flights ‘Dallas ‘Nashville)
= (list ‘Dallas ‘LittleRock ‘Memphis ‘Nashville)

Original Version

;; find-flights: city city route-map � (list of city) or false
;; Purpose: create a path of flights from start to finish or return false
(define (find-flights start finish rm)
 (cond
 [(symbol=? start finish) (list start)]
 [(else

(local [(define possible-route
 (find-flights-for-list (direct-cities start rm) finish rm))]
 (cond

 [(boolean? possible-route) false]
 [else (cons start possible-route)]))]))

;; direct-cities: city route-map � list-of-city
;; Purpose: return a list of all cities in the route map with direct flights
;; from the city given as an argument
(define (direct-cities from-city rm)
 (local [(define from-city-info

 (filter (lambda (c)(symbol=? (city-info-name c) from-city)) rm))]
 (cond
 [(empty? from-city-info) empty]
 [else (city-info-dests (first (from-city-info))])))

;; find-flights-for-list: list-of-city city route-map � list-of-city or false
;; Purpose: finds a flight route from some city in the input list to the
;; destination, or returns false if no such route can be found.
(define (find-flights-for-list aloc finish rm)
 (cond
 [(empty? aloc) false]
 [else

(local [(define possible-route
 (find-flights (first aloc) finish rm))]

 (cond
 [(boolean? possible-route)
 (find-flights-for-list (rest aloc) finish rm)]
 [else possible-route]))]))

With Institutional Memory
;; find-flights: city city route-map (list of city) � (list of city) or false
;; Purpose: create a path of flights from start to finish or return false
(define (find-flights start finish rm visited)
 (cond
 [(symbol=? start finish) (list start)]
 [(memq start visited) false] ;; cut off this search path
 [(else

(local [(define possible-route
 (find-flights-for-list (direct-cities start rm) finish

rm (cons start visited)))]
 (cond

 [(boolean? possible-route) false]
 [else (cons start possible-route)]))]))

;; direct-cities: city route-map � list-of-city
;; Purpose: return a list of all cities in the route map with direct flights
;; from the city given as an argument
(define (direct-cities from-city rm)
 (local [(define from-city-info

(filter (lambda (c)(symbol=? (city-info-name c) from-city))
rm))]

 (cond [(empty? from-city-info) empty]
 [else (city-info-dests (first (from-city-info))])))

;; find-flights-for-list: list-of-city city route-map (list of city)
;; � list-of-city or false
;; Purpose: finds a flight route from some city in the input list to the
;; destination, or returns false if no such route can be found.
(define (find-flights-for-list aloc finish rm visited)
 (cond
 [(empty? aloc) false]
 [else

(local [(define possible-route
 (find-flights (first aloc) finish rm visited))]

 (cond
 [(boolean? possible-route)
 (find-flights-for-list (rest aloc) finish rm visited)]
 [else possible-route]))]))

(find-flights ‘Houston ‘Memphis routes)

=> (find-flights 'Houston 'Memphis routes)
=> (direct-cities 'Houston)
=> (find-flights-for-list
 (list 'Dallas 'NewOrleans) 'Memphis routes)

=>(find-flights 'Dallas 'Memphis routes)
=> (direct-cities 'Dallas)
=> (find-flights-for-list

(list 'LittleRock 'Memphis) 'Memphis routes)

=> (find-flights 'LittleRock 'Memphis routes)
=> (direct-cities 'LittleRock)
=> (find-flights-for-list empty 'Memphis routes)

=> (find-flights-for-list (list 'Memphis) 'Memphis routes)
=> (find-flights 'Memphis 'Memphis)

returns (list 'Houston 'Dallas 'Memphis)

Dead end !

Never got this far !!

