COMP 210, FALL 2000
Lecture 21: Finishing up Lambda & Review for Second Exam

Reminders:

1. Exam handed out today, due Friday at S5pm in my office, DH 2065. If
you missed class, copies of the exam are available outside my office.
Exam covers through today’s lecture, all of the lab lectures (through this
week ‘s lab lecture that covered abstract functions — lab 8 on the web
site), and the book material through section 24.

2. Homework will appear on the web site today or this weekend, due
Monday 10/30.

3. Review session this afternoon DH 1064 or DH 1070

Review
e We finished up functional abstraction. We introduced lambda.

Introduction
Today's lecture will introduce one new piece of Scheme syntax (lambda) and
include some review material for the test.

Consider the Scheme program double-all

;; double-all: list-of-number -> list-of-number
;; Purpose: double all of the numbers in the input list
(define (double-all alon)
(cond
[(empty? alon) empty]
[(cons? alon)
(cons (* 2 (first alon)) (double-all (rest alon)))]

)

After lab, you should recognize that this function can be written more simply
using map.



;; double: number -> number
;; Purpose: consume n, produce 2n
(define (double num)
(* 2n)) ;; compiler person would write it as (+ n n)

;; double-all: list-of-number -> list-of-number
;; Purpose: double all of the numbers in the input list
(define (double-all alon)

(map double alon))

If we are going to make use of these abstract functions, we will quickly get
tired of making up names for all the little helper functions that we need. We
could, of course, encapsulate them inside a local

;; double-all: list-of-number -> list-of-number
;; Purpose: double all of the numbers in the input list
(define (double-all alon)
(local [(define (double n) (* 2 n))]
(map double alon) ))

This hides double from the world outside double-all and avoids the
potential for a name conflict. However, there are two problems with writing
double-all this way.

e [t forces you to invent a name for double. (minor hassle)

e [t violates the whole philosophical purpose of using local. The real
justifications for using a local are:
e To avoid computing some complicated value more than once.
e To make complicated expressions more readable by introducing
helper functions that break the expression up into more tractable parts.
(Notice that avoiding the use of invariant parameters might fall under
either case!)

This example fits neither criterion. The expression is not complicated; in
fact, it is about as simple as a Scheme expression can get. The expression is
not used in many places; it is used exactly once. The only reason for
introducing double is because we need a function (number->number) that we
can pass to map — this lets us avoid writing a lot of code by using the
abstract function.



To handle this situation, Scheme includes a construct called A.
Unfortunately, DrScheme operates under the limited typographic
conventions of computer keyboards, so we end up writing it out as lambda.
Lambda lets us create unnamed programs — it is a second way to write out a
program (without using define).

(define (double n) (lambda (n)
(* 2 n)) (* 2 n))

These are equivalent, in the sense that they both create programs that "do"
the same thing. They differ, in the sense that you can use double anywhere
that its name can be seen, while the lambda expression occurs somewhere in
the code, is created, is evaluated, and cannot be used elsewhere because it
has no name.

Using lambda, we could rewrite double-all as

(define (double-all alon)
(map (lambda (n) (* 2 n)) alon) )

Formally, lambda is written

(lambda
(argl arg2 ... argn)
body
)
where argl, arg2, ..., argn and body are arbitrary Scheme expressions.

To evaluate a lambda expression, DrScheme rewrites it as

(local [(define (a-unique-new-name argl arg?2 ... argn)
body)]
a-unique-new-name)

The body-expression cannot refer to a-unique-new-name because the
programmer does not know how to write it. The unique name is introduced
by the rewriting process, not by the programmer, so the programmer cannot



write a lambda expression that directly calls itself. To slightly simplify the
explanation, assume the list being sorted contains no duplicates.

Notice that lambda is the original way that Scheme defined functions. The
expressions

(define (define (f x)
(lambda(x) (* x x))) (* X X))

are entirely equivalent. DrScheme introduced the latter form because it is
somehow seen as friendlier than the former. However, the two are entirely
equivalent.

Exam Review:
Exam covers lectures 11 through 21 (today’s lecture)
Exam covers all the lab lectures, through lecture 8

Exam covers book through Intermezzo 4 (just before the start of Section V,
on Generative Recursion). I will not ask any questions from the section
on mathematical examples, but those of you considering a career in
science or engineering should look at that material before the semester is
over. You won’t see similar material again until you take CAAM 353.

The Exam will be a two-hour, closed-notes, closed-book take-home exam.
It is conducted under the Rice honor code. If this is your first take home
exam, recall that you should set aside enough time to do the exam in one
sitting (2 hours, fifteen minutes). Get all the supplies you need,
including paper. Record your name, starting time, stopping time on the
front of the test. Write the pledge, correctly, and sign it. Staple your
exam pages together.

Be sure to write your name legibly on the front of the test. Every test we get
one or two where we cannot read the writing!



The Big Picture
Four major subjects:
o Family trees, directory structures
Key ideas:
» Template for each data definition,
» Draw the arrows to get the mutual recursions correct

» Keep in mind that, sometimes, you need to summarize a list at the
level above the list—this happened in the siblings problem in the
homework

» Similarly, when you need to look down inside some other data
definition, that’s a good place to call a helper function

o Functions that take two complex arguments
Key ideas:

> Build a table of the possible cases or conditions that your program
might encounter

» Write down the predicates for those cases and use them to build
your template

» Use a similar table to write down the actions that should happen in
each case

» Test examples should include the trivial case— like (merge empty
empty)
e Local
Key ideas:

> Local creates a box where we can introduce new definitions and
use them

» When DrScheme evaluates local, it rewrites all the newly defined
names with unique names — for any occurrence inside the local,
including locals nested inside the current local. This has the effect
of creating a new “scope,” in that rewriting can (1) hide externally
visible names by changing them to refer to the local copy and (2)
prevent external (outside the box or outside the local) expressions
from referencing names defined inside the local (inside the box).

» You should use local:



1. To avoid computing some complicated value more than once

2. To make some complicated expression more readable by
introducing local helper functions to break the expression into
tractable parts (& clean up the mess). Local lets you hide these
names.

» Local is the only way we have given you to preserve a value in the
middle of a computation! It is quite limited, but it is there.

e Abstract functions

» When you see common patterns in the code, as we saw with the
whole series of repetitive examples (keep-xx-yy), you should
extract the essence and create an abstract version of the code.

» Make the differences be arguments to the abstract version—that is,
parameterize the code by the differences.

» DrScheme provides you with a number of built-in functions,
including filter, map, foldr, and foldl. You saw them in lab.

» Programs are just values in Scheme. Using lambda to define a
function makes that absolutely clear. You can make a program be
an argument to a function. A program can return a function. The
built-in abstract functions take function arguments.

» Lambda allows you to define an anonymous program, a program
with no name. This is useful when the program exists solely to be
passed to another program (as an argument). It gets you out of
needing to think up a name for the lambda program. It tells
DrScheme, in no uncertain terms, that you are not going to use the
program again.

(Remember, we mentioned that DrScheme runs around behind
your back, finding objects that can never be referenced and
reclaiming them. A lambda expression, used as an argument to
filter, can never be referenced after filter returns.)



