
COMP 210, Fall 2000 1 of 7 Lecture 20

;; keep-rel (num num -> bool) num list-of-nums -> list-of-nums
;; Purpose: keep all the numbers in the input list that have the
;; relation given by the function argument to the number
;; argument (whew!)
(define (keep-rel relation num alon)
 (local [(define filter-rel alon) ;; treat relation & num as invariant

 (cond
[(empty? alon) empty]
[(cons? alon)
 (cond

[(relation (first alon) num)
 (cons (first alon) (filter-rel (rest alon)))]
[else (filter-rel (rest alon))])]))

]
(filter-rel alon)))

(define (keep-gt-9 alon)
 (keep-rel > 9 alon))

COMP 210, Fall 2000 2 of 7 Lecture 20

;; keep-bet-5-9: list-of-numbers -> list-of-numbers
;; Purpose: returns a list containing those numbers in the
;; input list whose value is between 5 and 9,
;; inclusive
(define (keep-bet-5-9 alon)
 (cond
 [(empty? alon) empty]
 [(cons? alon)

(cond
 [(and (>= (first alon) 5) (<= (first alon) 9))
 (cons (first alon) (keep-bet-5-9 (rest alon)))]
 [else (keep-bet-5-9 (rest alon))]
)]))

COMP 210, Fall 2000 3 of 7 Lecture 20

;; bet-5-9?: number -> boolean
;; Purpose: test if the argument is between five and nine,
;; inclusive
(define (bet-5-9? anum)
 (and (>= num 5) (<= num 9)))

;; keep-bet-5-9: list-of-numbers -> list-of-numbers
;; Purpose: returns a list containing those numbers in the
;; input list whose value is between 5 and 9,
;; inclusive
(define (keep-bet-5-9 alon)
 (cond
 [(empty? alon) empty]
 [(cons? alon)

(cond
 [(bet-5-9? (first alon))
 (cons (first alon) (keep-bet-5-9 (rest alon)))]
 [else (keep-bet-5-9 (rest alon))]
)]))

COMP 210, Fall 2000 4 of 7 Lecture 20

;; bet? : num num num -> boolean
;; Purpose: determines if the third argument lies
;; numerically between the 1st & 2nd arguments
(define (bet? lower upper anum)
 (and (>= num lower) (<= num upper)))

;; keep-bet : num num list-of-numbers -> list-of-numbers
;; Purpose: keeps all the numbers lying between 1st & 2nd

;; arguments
(define (keep-bet lower upper alon)
 (local

[(define (filter-bet alon)
 (cond

[(empty? alon) empty]
[(cons? alon)
 (cond

[(bet? lower upper (first alon))
 (cons (first alon) (filter-bet (rest alon)))]
[else (filter-bet (rest alon))])]))]

(filter-bet alon)))

(define (keep-bet-5-9 alon)
 (keep-bet 5 9 alon))

COMP 210, Fall 2000 5 of 7 Lecture 20

(define (keep … alon)
 (local
 [(define (filter alon)

(cond
 [(empty? alon) empty)]
 [(cons? alon)
 (cond

[(… (first alon))
 (cons (first alon) (filter (rest alon)))]

[else (filter (rest alon))])]))]
 (filter alon)))

COMP 210, Fall 2000 6 of 7 Lecture 20

(define (keep keep-elt? alon)
 (local
 [(define (filter alon)

(cond
 [(empty? alon) empty)]
 [(cons? alon)
 (cond

[(keep-elt? (first alon))
 (cons (first alon) (filter (rest alon)))]

[else (filter (rest alon))])]))]
 (filter alon)))

(define (keep-lt-5 alon)
 (local [(define (lt-5? num) (< num 5))]

(keep lt-5? alon)))

(define (keep-bet-5-9 alon)
 (local [(define (bet-5-9? num) (bet? 5 9 num))]

 (keep bet-5-9? alon)))

COMP 210, Fall 2000 7 of 7 Lecture 20

;; keep-fee : list-of-symbol -> list-of-symbol
;; Purpose: return the list containing every occurrence of
;; the symbol 'fee
(define (keep-fee alos)
 (local [(define (is-fee? asym)(= 'fee asym))]
 (keep is-fee? alos)))

