
COMP 210, FALL 2000
Lecture 20: More on Functional Abstraction

Reminders:
1. Next exam is a take-home; handed out Friday, due one week later

(10/27/00@5pm).
2. Go to the lab lecture this week. Many functions that will be needed in

future labs and lectures and will only be covered in the lab lecture. You
are responsible for the lab lecture on the test.

3. Review session Friday, 3PM, DH 1070.

Review

1. We started to talk about functional abstraction. Built a series of
repetitive examples, intended to show you that they were similar.
Showed how to abstract them out. Ended with an example, keep-rel:
(num num -> num) num alon -> alon.

;; keep-rel (num num -> bool) num list-of-nums -> list-of-nums
;; Purpose: keep all the numbers in the input list that have the relation
;; given by the function argument to the number argument (whew!)
(define (keep-rel relation num alon)
 (local [(define filter-rel alon) ;; treat relation & num as invariant

 (cond
[(empty? alon) empty]
[(cons? alon)
 (cond

[(relation (first alon) num)
 (cons (first alon) (filter-rel (rest alon)))]
[else (filter-rel (rest alon))])]))

]
(filter-rel alon)))

(define (keep-gt-9 alon)
 (keep-rel > 9 alon))

This shocked several of you. We were able to pass the relational operator as
an argument to a function and it works.

We talked about the fact that programs are values. I pointed out that
everything you’ve seen so far, with the exception of define, define-struct,

and local , is a program. The rationale that I gave you is bogus. I suggested
that you couldn’t type define in the interactions window. I was wrong.

Back to Work
So far, all of these examples have looked at an open-ended interval (> 5, <
9). [Of course, we could use filter-rel to find all of the numbers equal to x,
but that's only interesting if we wanted to count them. (length (keep-rel = 5
somelist)).] What if we wanted to pull out the numbers between five and
nine?

;; keep-bet-5-9: list-of-numbers -> list-of-numbers
;; Purpose: returns a list containing those numbers in the input list
;; whose value is between 5 and 9, inclusive
(define (keep-bet-5-9 alon)
 (cond
 [(empty? alon) empty]
 [(cons? alon)

(cond
 [(and (>= (first alon) 5) (<= (first alon) 9))
 (cons (first alon) (keep-bet-5-9 (rest alon)))]
 [else (keep-bet-5-9 (rest alon))]
)]))

We should really write a helper function to replace the complex test.

;; bet-5-9?: number -> boolean
;; Purpose: test if the argument is between five and nine, inclusive
(define (bet-5-9? anum)
 (and (>= num 5) (<= num 9)))

;; keep-bet-5-9: list-of-numbers -> list-of-numbers
;; Purpose: returns a list containing those numbers in the input list
;; whose value is between 5 and 9, inclusive
(define (keep-bet-5-9 alon)
 (cond
 [(empty? alon) empty]
 [(cons? alon)

(cond
 [(bet-5-9? (first alon))
 (cons (first alon) (keep-bet-5-9 (rest alon)))]
 [else (keep-bet-5-9 (rest alon))]
)]))

You know, by now, where we are going. What if we want to change the
range of numbers? We can change the helper function, but we might be
using it somewhere else.
We can write a version that takes an arbitrary range of numbers…

;; bet? : num num num -> boolean
;; Purpose: determines if the third argument lies numerically between
;; the first and second arguments
(define (bet? lower upper anum)
 (and (>= num lower) (<= num upper)))

;; keep-bet : num num list-of-numbers -> list-of-numbers
;; Purpose: keeps all the numbers lying between first and second
arguments
(define (keep-bet lower upper alon)
 (local

[(define (filter-bet alon)
 (cond

[(empty? alon) empty]
[(cons? alon)
 (cond

[(bet? lower upper (first alon))
 (cons (first alon) (filter-bet (rest alon)))]
[else (filter-bet (rest alon))])]))]

(filter-bet alon)))

(define (keep-bet-5-9 alon)
 (keep-bet 5 9 alon))

Notice that we used a local to avoid passing around lower and upper at the
recursive calls inside filter-bet and keep-bet.

Abstracting from keep-rel & keep-bet
Look at the definitions of keep-rel and keep-bet. They are reasonably
similar. They differ in their parameters and the first case in the innermost
cond–where they decide whether or not to keep the first element of the input
list. The parameter differences boil down to inputs to that test. The cond
clause differs in the implementation of that test.

Can we write one program to capture all of that common code? We start by
copying down all of the information that is common to both programs,
leaving an ellipsis in places where they differ…

(define (keep … alon)
 (local
 [(define (filter alon)

(cond
 [(empty? alon) empty)]
 [(cons? alon)
 (cond

[(… (first alon))
 (cons (first alon) (filter (rest alon)))]

[else (filter (rest alon))])]))]
 (filter alon)))

Let's fill in the gaps. First, look at the gap inside filter. We need a helper
function that takes (first alon) and returns a boolean that tells filter whether
or not to keep the number. Let's make a number for that helper function and
make it a parameter. That fills in the gap in the parameters, too.

(define (keep keep-elt? alon)
 (local
 [(define (filter alon)

(cond
 [(empty? alon) empty)]
 [(cons? alon)
 (cond

[(keep-elt? (first alon))
 (cons (first alon) (filter (rest alon)))]

[else (filter (rest alon))])]))]
 (filter alon)))

To use this, we just need to write the appropriate helper functions. For
example

(define (keep-lt-5 alon)
 (local [(define (lt-5? num) (< num 5))]

(keep lt-5? alon)))

(define (keep-bet-5-9 alon)
 (local [(define (bet-5-9? num) (bet? 5 9 num))]

 (keep bet-5-9? alon)))

The function keep is so useful that Scheme provides a built-in version of it.
We call the built-in version of it filter.

The Professor is a Liar
Well, I told you that everything you learned outside of the compilers class is
a lie. In fact, Scheme does provide filter, but it is not as limited as the one
we wrote.

What if you wanted to write a function that counted the number of times the
symbol 'fee appeared in a list? You'd like to write it as

;; keep-fee : list-of-symbol -> list-of-symbol
;; Purpose: return the list containing every occurrence of 'fee
(define (keep-fee alos)
 (local [(define (is-fee? asym)(= 'fee asym))]
 (keep is-fee? alos)))

Except, this violates the contract for keep.

Look at the body of keep. Is there anything in the body of keep that depends
on the fact that the argument list contains numbers?

The contract is overly restrictive. In fact, we'd like keep to work on a list of
symbol, or a list of ftn, or a list of mechanic, or a list of plane, or a list of
just-about-anything.

To do this, we could rewrite the contract by defining a list of several types of
things. Imagine list-of-just-about-everything where it has a clause for
each kind of object that we want keep to use. Does this solve our problem?
NO. In particular, the list-of-just-about-everything allows one list to contain
many different kinds of elements. That makes the keep-elt function much
harder to write correctly. What we need is a notation that allows us to
specify that keep takes a list of something–-where every element of the list is
a something–-but that keep doesn't care what that something is. The precise
requirement for keep is that keep-elt must have a contract of something->
boolean.

To write this down as a Scheme contract, we want to say

;; a list-of-alpha is either
;; – empty, or
;; – (cons f r) where f is an alpha and r is a list of alpha.

Then, we can write the contract for keep as

;; keep : (alpha�boolean) list-of-alpha -> list-of-alpha

This concisely expresses the requirement for keep. The function keep-elt
must process the elements of the argument list and return a boolean. The
elements of the input and output list both have that same type. This is the
real contract for filter.

Lambda
If we’re going to use abstract functions, such as filter, we’re going to end up
creating a large number of helper functions. Many of these functions will
have only one purpose–-they will be created to pass into an abstract
function. In this case, there is little (or no) point in forcing you to invent
clever (or unique) names for all of them. Scheme gives us two mechanisms
to avoid naming problems with these helper functions.

We could, of course, encapsulate them inside a local, as we did with keep-
fee.

;; keep-fee : list-of-symbol -> list-of-symbol
;; Purpose: return the list containing every occurrence of 'fee
(define (keep-fee alos)
 (local [(define (is-fee? asym)(symbol=? 'fee asym))]
 (keep is-fee? alos)))

This hides is-fee? from the world outside keep-fee and avoids the potential
for a name conflict. However, there are two problems with writing keep-fee
this way.

1. It forces you to invent a name for double. (minor hassle)

2. It violates the whole philosophical purpose of using local. The real
justifications for using a local are:
1. To avoid computing some complicated value more than once.
2. To make complicated expressions more readable by introducing

helper functions that break the expression up into more tractable parts.
(Notice that avoiding the use of invariant parameters might fall under
either case!)

This example fits neither criterion. The expression is not complicated; in
fact, it is about as simple as a Scheme expression can get. The expression is
not used in many places; it is used exactly once. The only reason for
introducing double is because we need a function (symbol�symbol) that we
can pass to keep (or filter) – this lets us avoid writing a lot of code by using
the abstract function.

To handle this situation, Scheme includes a construct called λ.
Unfortunately, DrScheme operates under the limited typographic
conventions of computer keyboards, so we end up writing it out as lambda.
Lambda lets us create unnamed programs –- it is a second way to write out a
program (without using define).

(define (is-fee? asym) (lambda (asym)
 (symbol=? asym ‘fee)) (symbol=? asym ‘fee))

These are equivalent, in the sense that they both create programs that "do"
the same thing. They differ, in the sense that you can use is-fee? anywhere
that its name can be seen, while the lambda expression occurs somewhere in
the code, is created, is evaluated, and cannot be used elsewhere because it
has no name.

Using lambda, we could rewrite keep-fee as

(define (keep-fee alos)
 (filter (lambda (asym) (symbol=? asym ‘fee)) alos))

Formally, lambda is written

(lambda
 (arg1 arg2 … argn)
 body

)

where arg1, arg2, …, argn and body are arbitrary Scheme expressions.

To evaluate a lambda expression, DrScheme rewrites it as

(local [(define (a-unique-new-name arg1 arg2 … argn)
 body)]

a-unique-new-name)

The body-expression cannot refer to a-unique-new-name because the
programmer does not know how to write it. The unique name is introduced
by the rewriting process, not by the programmer, so the programmer cannot
write a lambda expression that directly calls itself. To slightly simplify the
explanation, assume the list being sorted contains no duplicates.

