
COMP 210, Fall 2000 1 Lecture 19

;; keep-lt-5 : list of numbers -> list of numbers
;; Purpose: keeps all input numbers less than 5
(define (keep-lt-5 alon)
 (cond

[(empty? alon) empty]
[(cons? alon)
 (cond

[(< (first alon) 5)
 (cons (first alon) (keep-lt-5 (rest alon)))]
[else (keep-lt-5 (rest alon))]

)]
))

COMP 210, Fall 2000 2 Lecture 19

;; keep-lt-9 : list of numbers -> list of numbers
;; Purpose: keeps all input numbers less than 9
(define (keep-lt-9 a-lon)
 (cond

[(empty? alon) empty]
[(cons? alon)
 (cond

[(< (first alon) 9)
 (cons (first alon) (keep-lt-9 (rest alon)))]
[else (keep-lt-9 (rest alon))])

]))

COMP 210, Fall 2000 3 Lecture 19

;; keep-lt: number list-of-numbers -> list-of-numbers
;; Purpose: keep all input numbers that are less than the
;; given number
(define (keep-lt num alon)
 (cond
 [(empty? alon) empty]
 [(cons? alon)

 (cond
 [(< (first alon) num)
 (cons (first alon) (keep-lt num (rest alon)))]
 [else (keep-lt num (rest alon))])

]))

COMP 210, Fall 2000 4 Lecture 19

;; keep-lt: number list-of-numbers -> list-of-numbers
;; Purpose: keep all input numbers that are less than the
;; given number
(define (keep-lt num alon)
 (local

[(define (filter-lt alon)
 (cond
 [(empty? alon) empty]

 [(cons? alon)
 (cond
 [(< (first alon) num)
 (cons (first alon) (filter-lt (rest alon)))]
 [else (filter-lt (rest alon))])]))

]
(filter-lt alon)

))

(define (keep-lt-5 alon)
 (keep-lt 5 alon))

(define (keep-lt-9 alon)
 (keep-lt 9 alon))

COMP 210, Fall 2000 5 Lecture 19

;; keep-gt-5 : list of numbers -> list of numbers
;; Purpose: keeps all input numbers greater than 5
(define (keep-gt-5 alon)
 (cond

[(empty? alon) empty]
[(cons? alon)
 (cond

[(> (first alon) 5)
 (cons (first alon) (keep-gt-5 (rest alon)))]
[else (keep-gt-5 (rest alon))]

)]
))

COMP 210, Fall 2000 6 Lecture 19

;; keep-rel-5 : (num num -> num) list of num -> list of num
;; Purpose: keep all input numbers that have relation than 5
(define (keep-rel-5 relation alon)
 (cond

[(empty? alon) empty]
[(cons? alon)
 (cond

[(relation (first alon) 5)
 (cons (first alon)

 (keep-rel-5 relation (rest alon)))]
[else (keep-relation-5 (rest alon))]

)]
))

(define (keep-lt-5 alon)
 (keep-rel-5 < alon))

(define (keep-gt-5 alon)
 (keep-rel-5 > alon))

COMP 210, Fall 2000 7 Lecture 19

;; keep-rel-5 : (num num -> num) list of num -> list of num
;; Purpose: keep all input numbers that have relation than 5
(define (keep-rel-5 relation alon)
 (local
 [(define (filter-rel alon)

(cond
 [(empty? alon) empty]
 [(cons? alon)
 (cond

[(relation (first alon) 5)
 (cons (first alon) (filter-rel (rest alon)))]
[else (filter-rel (rest alon))])]))

]
 (filter-rel alon)))

(define (keep-lt-5 alon)
 (keep-rel-5 < alon))

COMP 210, Fall 2000 8 Lecture 19

;; keep-rel:
;; (num num -> num) num list-of-nums -> list-of-nums
;; Purpose: keep all the numbers in the input list that have
;; the relation given by the function argument to the
;; number argument (whew!)
(define (keep-rel relation num alon)
 (local [(define (filter-rel alon) ;; relation & num are invariant

 (cond
[(empty? alon) empty]
[(cons? alon)
 (cond

[(relation (first alon) num)
 (cons (first alon) (filter-rel (rest alon)))]
[else (filter-rel (rest alon))])

]))
]
(filter-rel alon)))

(define (keep-gt-9 alon)
 (keep-rel > 9 alon))

