
COMP 210, FALL 2000
Lecture 19: Functional Abstraction

Reminders:
1. Next exam is a take-home; handed out 10/20/2000, due 10/27/00 (5pm).
2. Homework will be due next Friday.
3. Review session? (at most one)

Review

1. Last class: rewriting rules for local, other uses for local.

On to Functional Abstraction
Write a simple function that consumes a list of numbers and produces a list
of numbers. The numbers in the returned list should be exactly those
numbers in the original list that are less than 5 (in the same order as the
original list).

;; keep-lt-5 : list of numbers -> list of numbers
;; Purpose: keeps all input numbers less than 5
(define (keep-lt-5 alon)
 (cond

[(empty? alon) empty]
[(cons? alon)
 (cond

[(< (first alon) 5)
 (cons (first alon) (keep-lt-5 (rest alon)))]
[else (keep-lt-5 (rest alon))]

)]
))

What about keep-lt-9 ?

;; keep-lt-9 : list of numbers -> list of numbers
;; Purpose: keeps all input numbers less than 9
(define (keep-lt-9 a-lon)
 (cond

[(empty? alon) empty]
[(cons? alon)
 (cond

[(< (first alon) 9)
 (cons (first alon) (keep-lt-9 (rest alon)))]
[else (keep-lt-9 (rest alon))])]))

Notice how much these two functions have in common. Can we write one
function that captures all this common code (single-point of control) and use
it to implement keep-lt-5 and keep-lt-9?

;; keep-lt: number list-of-numbers -> list-of-numbers
;; Purpose: keep all input numbers that are less than the given number
(define (keep-lt num alon)
 (cond
 [(empty? alon) empty)
 [(cons? alon)

 (cond
 [(< (first alon) num)
 (cons (first alon) (keep-lt num (rest alon)))]
 [else (keep-lt num (rest alon))])]))

Notice that num never changes. We could use a local to avoid passing it
around in so many places (and save work) [But, efficiency is only a concern

in the 1st part of Comp 210 when it becomes an exponential problem.]

;; keep-lt: number list-of-numbers -> list-of-numbers
;; Purpose: keep all input numbers that are less than the given number
(define (keep-lt num alon)
 (local

[(define (filter-lt alon)
 (cond
 [(empty? alon) empty)

 [(cons? alon)
 (cond
 [(< (first alon) num)
 (cons (first alon) (filter-lt (rest alon)))]
 [else (filter-lt (rest alon))])]))

]
(filter-lt alon)

))

Using keep-lt, we can define keep-lt-5 and keep-lt-9

(define (keep-lt-5 alon)
 (keep-lt 5 alon))

(define (keep-lt-9 alon)
 (keep-lt 9 alon))

What if we wanted to write keep-gt-5

;; keep-gt-5 : list of numbers -> list of numbers
;; Purpose: keeps all input numbers greater than 5
(define (keep-gt-5 alon)
 (cond

[(empty? alon) empty]
[(cons? alon)
 (cond

[(> (first alon) 5)
 (cons (first alon) (keep-gt-5 (rest alon)))]
[else (keep-gt-5 (rest alon))]

)]
))

Where do these functions differ? Only in the comparison operator and in the
names of the functions. [The last lecture should have convinced you that the
names are malleable.]

How can we reuse the common code here? Previously, we made the upper
limit on the value into a parameter. Now, we need to make the comparison
operation itself be a parameter. Can we pass in the comparison operator?

Critical Aside
How do we represent > in the contract? (number number -> number)
We've been writing these contracts for eight weeks now. This should be
pretty natural.

Back To Abstracting Out Comparison

;; keep-rel-5 : (num num -> bool) list of numbers -> list of numbers
;; Purpose: keeps all input numbers that have relation than 5
(define (keep-rel-5 relation alon)
 (cond

[(empty? alon) empty]
[(cons? alon)
 (cond

[(relation (first alon) 5)
 (cons (first alon) (keep-rel-5 relation (rest alon)))]
[else (keep-relation-5 (rest alon))]

)]
))

and

(define (keep-lt-5 alon)
 (keep-rel-5 < alon))

(define (keep-gt-5 alon)
 (keep-rel-5 > alon))

As before, we can use local in the obvious way to avoid passing relation as a
parameter.

;; keep-rel-5 : (num num -> bool) list of numbers -> list of numbers
;; Purpose: keeps all input numbers that have relation than 5
(define (keep-rel-5 relation alon)
 (local
 [(define (filter-rel alon)

(cond
 [(empty? alon) empty]
 [(cons? alon)
 (cond

[(relation (first alon) 5)
 (cons (first alon) (filter-rel (rest alon)))]
[else (filter-rel (rest alon))])]))

]
 (filter-rel alon)))

(define (keep-lt-5 alon)
 (keep-rel-5 < alon))

Of course, the next thing we want to do is abstract out the number 5. We
should be able to write a function that takes both the relation and the limit as
parameters and returns a list containing the specified subset of the numbers
in the original list.

;; keep-rel (num num -> bool) num list-of-nums -> list-of-nums
;; Purpose: keep all the numbers in the input list that have the relation
given
;; by the function argument to the number argument (whew!)
(define (keep-rel relation num alon)
 (local [(define filter-rel alon) ;; treat relation & num as invariant

 (cond
[(empty? alon) empty]
[(cons? alon)
 (cond

[(relation (first alon) num)
 (cons (first alon) (filter-rel (rest alon)))]
[else (filter-rel (rest alon))])]))

]
(filter-rel alon)))

(define (keep-gt-9 alon)
 (keep-rel > 9 alon))

Programs as Values
How can we pass > or < or = as an argument (parameter) to a function such
as keep-rel ?

A program is just another value. Recall that we created test values using the
define operation. We used it to create numbers and lists. These became
named values in the world of Scheme values. We use the same syntax and
operation to create programs, don't we? The define operator takes its two
parts – the function name and argument list and its body. The way that
DrScheme evaluates the function is a little more complex than evaluating
(define Seventeen 17) because it involves rewriting the parameters with their
values. Of course, Seventeen has no parameters, so the mechanism for
handling functions will work on a defined numerical value as a trivial case.

In general, functions (programs) are values. We can use them anywhere that
we use values. For example, we can build lists of functions, just as we build
lists of symbols or numbers, or objects created with define-struct.

What about > ? Isn't it special? Isn't it a built-in operator?

Yes. It is a built-in operator, but that grants it no special exemptions
from the rules that govern the execution of Scheme programs. The
built-in operators are just functions themselves. Thus, +, *, /, -, <, =,
> are all programs that you could write. So are add1, sub1. BUT,
define and define-struct are not implemented that way; they are only
valid in the definitions window–-not in the interactions window. That
gives you a hint that they are not Scheme operators.

What about returning a program? If we can treat programs as values, can we
write a Scheme program that creates new programs and returns them?

Yes. However, we have not (yet) seen an operator that builds a
program. That’s in next Friday’s lecture. With the right operator,
lambda, you can write programs that create new programs and return
them.

