
COMP 210, FALL 2000
Lecture 17: Introducing Local

Reminders:
1. Homework due Wednesday.  The one after that will be due Friday after

break (rather than Wednesday).

Review
1. We looked at three examples of programs that took two (a pair of?)

complicated arguments.  They were append, make-points, and merge.
It wasn't clear how our previous practice of writing templates worked on
these more intricate examples.  They divided into three distinct cases.

a) The program does not look inside one of the arguments, so it can use
the standard template for the data definition.

b) The program uses both arguments completely, but they must be of the
same length for the problem instance to make sense.  This leads to a
simplified template that looks like the standard template, except that
each reference to a selector function for the first argument is paired
with a selector function for the second argument.

c) The program uses both arguments completely, with no assumptions
about their relative length.  In this case, we need to write down a table
to compute the questions that we can ask in the clauses of a cond to
differentiate between the cases.

Each case leads to a template that we can use to solve the problem.
However, that template is a function of the data definition, the contract,
and the purpose.  This is a significant departure from our prior practice.

This also makes it clear why the book places template development after
writing down the contract, purpose, and header, rather than after writing
down the data definition.

In your homework, when you encounter a program that consumes two
complex arguments, I want you to write out the general template as step
1.5 (between data analysis and contract-purpose-header) and then
specialize the template, if possible, as step 4.  This balances between the
book’s notion on where the template should go and my own taste for
keeping the template problem-independent.

Back to the exam
Consider the task of writing



;; best-score : list-of-students -> number
;; Purpose: return the largest score attained by a student in the
;;                argument list
(define (max-of-list) … )

Working with the standard template for list leads us to an interesting
quandry–-what should it return for the empty list?   What is (max-of-list
empty) ?

On the exam, we had one additional piece of information that made the
problem tractable.  We had a lower bound on the score that a student could
obtain.  With a lower bound, we could answer the empty? quandry by
returning the lower bound.  This simplifies the entire issue.  <slide>

To address this quirk of contracts, lists, and arithmetic, the book introduces a
slight twist on the notion of a list–-it introduces the non-empty-list.   We
can define a non-empty-list
As

;; a nelon (non-empty-list-of-numbers) is either
;;    –- (cons f  empty), where f is a number, or
;;    –- (cons f  r), where f is a number and r is nelon

Why do it this way?  For the template that it generates:

(define  (f  a-nelon)
   (cond
        [(empty? (rest a-nelon)    … (first a-nelon)]
        [(cons?   (rest a-nelon) … (first a-nelon) … (f (rest a-nelon))]
    ))

With this template we can easily write max-of-list and sidestep the issue of
an empty list.  [What we've really done is to restrict the domain of inputs to
max-of-list so that it excludes the troublesome case–-an old and time-
honored trick.]



;; max-of-list : nelon -> number
;; Purpose: returns the largest number in the input nelon
(define (max-of-list  a-nelon)
   (cond
        [(empty? (rest a-nelon)   (first a-nelon)]
        [(cons?  (rest a-nelon)
            (cond
                  [(> (first a-nelon)  (max-of-list (rest a-nelon)))
                   (first a-nelon)]

      [else (max-of-list (rest a-nelon))]
)]

    ))

Reflections on max-of-list
First, its name should really be max-of-nelon, not max-of-list.  Ignoring that,
there is something deeply unsatisfying about this program.  It recurs twice,
once in evaluating the question (> (first a-nelon) (max-of-list (rest a-
nelon))), and the second time if that question evaluates to false.   This is
problematic for several reasons.

� We wrote the same expression twice.  If we need to go back and
change it, for example, to instill truth in naming, we need to
modify it in several places.  We'd like, aesthetically, to have a
single point of control.  [We've worked several examples in class
that fail this criterion.  We just haven't pointed them out.]

� If the expression is long and tedious (this one is not), we would
rather write it once and read it once.   [This is a corollary of the
first reason, but in COMP 210, it always seems to get listed
separately.]

� Invoking the function twice on the same argument is wasteful.  [I
know, we keep saying that efficiency is not an objective in COMP
210, but this is getting ridiculous.  This program computes the max
to figure out whether or not it should compute the max!]

Consider a list of 6 numbers (list 1 2 3 4 5 6).  Invoking max-of-list
on it will recur twice on a list of five numbers.  Each of those
recurs twice on a list of four numbers.  Each of those recurs…
This leads, quite rapidly, to an exponential blowup in the amount
of work required to find a simple maximum.  For a list of n

numbers, it calls max-of-list 2n-1 times, or 63 times for  our list of



6 elements. (For a list of 7, it takes 127 calls!) If you ask a first
grader to solve this problem by hand, they typically go down the
list once.  Our program should do better than that.

Warning: New Scheme Syntax
Its been a while since we introduced any new syntax in Scheme.  [Yes,
we've introduced some additional functions, but no new ways of expressing
computations.]  Today, let's look at the scheme construct local that is
designed to help us out of our quandary with max-of-list.

Local takes two complicated arguments–-a list of definitions and an
expression.  It creates a new name space, or context, or scope that contains
the definitions, then evaluates the expression inside that context.  Using
local to rewrite max-of-list, we get

;; max-of-list : nelon -> number
;; Purpose: returns the largest number in the input nelon
(define (max-of-list  a-nelon)
   (cond
        [(empty? (rest a-nelon)   (first a-nelon)]
        [(cons?  (rest a-nelon)

(local
     (   (define maxrest   (max-of-list (rest a-nelon))))

                     (cond
                           [(> (first a-nelon)  (maxrest)) (first a-nelon)]

                 s[else maxrest ] ))
)]

    ))

Notice that the syntax is

(local  ( (defines) ) (expression) )

The first argument to local is a list of definitions.  The list is enclosed in
parentheses.  The second argument is an expression.

Local behaves as follows.  It creates a new scope–-think of this as a box in
the world of Scheme objects. The box has walls that are one-way mirrors.
Something inside the box can see through the walls to the outside world, but
anything outside the box has no clue as to what is hidden inside the box.

Inside the box, it evaluates the definitions, creating whatever results those
definitions imply.  After it evaluates the definitions, it then evaluates the
expression, inside the box.  Thus, the expression sees both the contents of



the box and the surrounding context.  The expression evaluates to a result–-a
value.  DrScheme replaces the local with that value and discards the box.

Back to max-of-list
In our example, max-of-list uses a local to find the largest value in the rest
of a-nelon.  It saves this result as maxrest (using the define).  Now, it can
reference maxrest twice–-once in the test and once in the else clause.  The
entire program traverses the list once, just as a first grader would.

Notice that it evaluates the local once for each element of the list. Thus, for a
list of n elements, it will create a nest of n boxes.  Each box will hold the
largest list element found in any of the enclosed boxes.  At the outermost
box, this produces the largest element from the rest of the original nelon,
which is compared against the first element of the nelon.  The result must be
the largest element of this list.

This solution examines the list once.  It does n comparisons.  It creates n

boxes.  This is much better than 2n-1, isn’t it.

Here's another example.

(define (exp-5 x)
    (local ((define (square y) (* y y))
                (define (cube    z) (* z (square z))) )
              (* (square x) (cube x))
     ))

If we type this into the definitions window, click execute, and go to the
interactions window and evaluate (exp-5  2), DrScheme complains bitterly.
We need to move to the Intermediate language level.  Once we've done that,
we can evaluate (exp-5 2).  DrScheme evaluates it to the number 32.  If we
then type (cube 2), what happens?

DrScheme gives us an error.   Why?  Because cube exists only inside the
new name space created by the local. When it is evaluating exp-5, it creates
that name space, defines square and cube, and uses them.  When it finishes
evaluating the local, that name space goes away and those programs no
longer can be named.  [They exist, in some sense, but are no longer
accessible to us.]

More on this next lecture.  The homework will hammer away on locals.

This one only makes
sense as an example to
make the point about
local.  The straight-
forward version that
multiplies x five times
is simpler!


