
COMP 210, FALL 2000
Lecture 16: Working With Two Complicated Arguments

Reminders:
1. Homework due Wednesday

Review
1. We looked at files, directories, and programs that manipulate them. I

gave you a homework assignment to write count-files.

Now, you’ve probably seen enough trees (between class, lab, and the next
homework) to last you for a while.

Programs that consume two complex arguments
Last class, we started talking about this subject …

Examples (Some functions that take two complex arguments)

1. append

;; append: list list -> list
;; Purpose: produces a list with all the elements of the first
;; argument followed by all the elements of the
;; second argument
(define (append list1 list 2)
 (cond
 [(empty? list1) list2]
 [(cons? list1)

 (cons (first list1) (append (rest list1) list2)]
))

This program never examines its second argument. It never treats it as a list,
except to return it, untouched, as the second argument. Thus, we can write
this function quite easily by using the standard template for a program that
takes a list-valued argument.

2. make-points

;; a point is
;; (make-point x y)

;; where x and y are numbers
(define-struct point (x y))

;; make-points: list-of-numbers list-of-numbers -> list-of-points
;; Purpose: takes two lists of numbers, interprets them as a list of
;; x and y coordinates, and produces the corresponding list of
;; points.
(define (make-points x-list y-list) …)

How does the template look? Clearly, make-points must manipulate the
contents of both of its arguments. For the program to make sense, however,
a simple fact must be true–-both lists must have the same number of
elements. This fact simplifies the structure of the template.

(define (f x-list y-list)
 (cond
 [(empty? x-list) …]
 [(cons? x-list) …

… (first x-list) … (first y-list) …
… (f (rest x-list) (rest y-list)) …]

))

Given this template, we can develop the program by filling in the blanks and
eliding unneeded constructs.

;; make-points: list-of-numbers list-of-numbers -> list-of-points
;; Purpose: takes two lists of numbers, interprets them as a list of
;; x and y coordinates, and produces the corresponding list of
;; points.
(define (make-points x-list y-list)
 (cond
 [(empty? x-list) empty]
 [(cons? x-list)
 (cons

 (make-point (first x-list) (first y-list))
 (make-point (rest x-list) (rest y-list)))]

))

Notice that the template incorporates knowledge of the contract and purpose,
making it a function of both the data definition(s) and the program being
developed. This is quite a leap away from what we've done previously.
This will become even more extreme for problems where we lack the kind of
special case knowledge that simplified this template.

3. merge

;; merge: list-of-numbers list-of-numbers -> list-of-numbers
;; Purpose: takes as input two lists of numbers, which are assumed
;; to be in ascending order by value and produces a single list
;; that contains all the numbers, including duplicates, sorted in
;; ascending order
(define (merge alon1 alon2) …

Clearly, merge must look inside both lists. It can make no assumptions
about the length of either list. (merge empty (cons 1 empty))) should
produce (cons 1 empty). What do we do to produce a template? Rely on
the methodology! Let's write down examples.
2 inputs, 2 cases in data definition => at least 4 examples

(merge empty empty) => empty

(merge empty (cons1 (cons 5 empty))) => (cons 1 (cons 5 empty))

(merge (cons 1 (cons 5 empty)) empty) => (cons 1 (cons 5 empty))

(merge (cons 1 (cons 5 empty)) (cons 3 empty))

=> cons 1 (cons 3 (cons 5 empty)))

Our program must be able to handle all these diverse cases correctly. Thus,
we need to work out a set of questions that the program can use in the cond
statement to distinguish them. We can fill in a table to derive the conditions
…
Questions for list x list -> list

(empty? alon2) (cons? alon2)
(empty? alon1) (and (empty? alon1)

 (empty? alon2))
(and (empty? alon1)
 (cons? alon2))

(cons? alon1) (and (cons? alon1)
 (empty? alon2))

(and (cons? alon1)
 (cons? alon2))

The table makes the structure of the template clear.

(define (f alon1 alon2)
 (cond
 [(and (empty? alon1) (empty? alon2)) …]

[(and (empty? alon1) (cons? alon2)) …
… (first alon2) … (rest alon2) …]

[(and (cons? alon1) (empty? alon2)) …
… (first alon1) … (rest alon1) …]

[(and (cons? alon1) (cons? alon2)) …
… (first alon1) … (first alon2) …
… (rest alon1) … (rest alon2)]

))

While the structure is clear, the template is missing all of the recursion
relationships? This case is a little more complex than the ones we've seen in
the past.

� In case 1, both lists are empty so there is no recursion.
� In case 2, we need to recur on alon2. However, the function needs

two list arguments, not one. What is the other argument? We are
tempted to pass in empty, but we should pass in alon1, instead. It
makes better logical sense, even though we know it is equivalent to
empty. (We just tested it.) So, we can use (f alon1 (rest alon2)).

� In case 3, we need to recur on alon1. By symmetry with case 2, we
should use (f (rest alon1) alon2).

� In case 4, we should recur on both alon1 and alon2. We have
several choices for distinct ways that we could recur. These
include

1. (f alon1 (rest alon2))
2. (f (rest alon1) alon2)
3. (f (rest alon1) (rest alon2))

We will see cases where each of these is the right thing to do.
Since we are building a template, we should write down all of
these forms. When we tailor the template to a specific program,
we can delete (or cross out) the ones that we do not need.

This leads to our final template for this program.

 (define (f alon1 alon2)
 (cond
 [(and (empty? alon1) (empty? alon2)) …]

[(and (empty? alon1) (cons? alon2)) …
… (first alon2) … (f alon1 (rest alon2)) …]

[(and (cons? alon1) (empty? alon2)) …
… (first alon1) … (f (rest alon1) alon2) …]

[(and (cons? alon1) (cons? alon2)) …
… (first alon1) … (first alon2) …

(f alon1 (rest alon2))
(f (rest alon1) alon2))
(f (rest alon1) (rest alon2))

))

and then the code for merge almost writes itself …

(define (merge alon1 alon2)
 (cond
 [(and (empty? alon1) (empty? alon2)) empty]

[(and (empty? alon1) (cons? alon2)) alon2]
[(and (cons? alon1) (empty? alon2)) alon1]
[(and (cons? alon1) (cons? alon2))
 (cond

 [(< (first alon1) (first alon2))
 (cons (first alon1) (merge (rest alon1) alon2))]
 [else
 (cons (first alon2) (merge alon1 (rest alon2))]

))

This function, merge, forms the core of a general algorithm for sorting.

The Lesson
We saw three kinds of programs that process to complicated inputs:

1. one complex input need not be examined (or traversed)
2. both inputs must be examined in their entirety, but they must

always have the same length

3. both inputs must be examined, and we known nothing of their
lengths.

Each case leads to a distinctly different template.

Another example

;; los-equal?: list-of-symbol list-of-symbol � boolean
;; Purpose: returns true if the two lists are, element for ;;
element, identical, and false otherwise

(define (los-equal? los1 los2) …)

Develop the code and volunteer to write it at the board.

