
COMP 210, FALL 2000
Lecture 12: More Family Trees

Reminders:
• Homework assignment due Friday 9/30/00
• Exam will be next class, 9/27/2000, in class (DH 1055)

Review
1. Introduced non-list information structures with the example of a child-

centric family tree–-that is, a family tree structured from the child's point
of vies.

2. Built a program in-family? that checked a symbol for membership in a
family tree. See the posted lecture notes for a correction to what I said
about the need for a helper function in in-family?

Back to Family Trees
As you recall, we had defined a family-tree node (ftn) as:

;; a ftn is either
;; – a symbol, or
;; – (make-ftn name father mother)
;; where name is a symbol and father and mother are ftn
(define-struct ftn (name father mother))

From this point, we went on to build the program in-family? that consumed
a ftn and a symbol and returned a boolean that indicated whether or not the
symbol was found in the argument ftn.

This representation of family trees is quite simple. It only includes people's
names and their parent–child relationships. Let's get more realistic. First, we
can add more information, such as year of birth (for age) and eye-color.
Second, we should be able to account for families where the information
about an ancestor is unknown–-a common situation in genealogical research.

How would we revise the data definition for ftn? These two changes are
handled differently. Adding year of birth and eye-color simply adds more

Mike

Susan

Pat

Tom

Mary

Ann Joe

fields to the structure. Making allowance for missing parents is a matter of
how we build and interpret the data structure; we can use empty to represent
the missing ancestors and disallow an unencapsulated symbol as a ftn.

;; a ftn is either
;; – empty, or
;; – (make-ftn name mother father year eyes)
;; where name is a symbol, mother and father are ftn,
;; year is a number, and eyes is a symbol
(define-struct ftn (name mother father year eyes))

;; Examples
 empty
 (make-ftn

'Mary
(make-ftn 'Ann empty empty 1950 'blue)
empty
1975
'green)

What does the template for this more complex ftn look like?

(define (f … a-ftn …)
 (cond
 [(empty? a-ftn) …]
 [(ftn? a-ftn) …

(ftn-name a-ftn) …
(f (ftn-mother a-ftn) …) …
(f (ftn-father a-ftn) …) …
(ftn-year a-ftn) …
(ftn-eyes a-ftn) …

]
))

What does the program in-family? look like on this new version of ftn?

;; in-family? : ftn symbol -> boolean
;; Purpose: returns true if symbol is in the family tree
(define (in-family? a-ftn name)
 (cond
 [(empty? a-ftn) false]
 [(ftn? a-ftn)
 (or

(symbol=? (ftn-name a-ftn) name)
(in-family? (ftn-mother a-ftn) name)
(in-family? (ftn-father a-ftn) name))

]
))

Let’s develop the program count-female-anscestors: ftn -> number. It
should return the number of female ancestors in the ftn; a person does not
count as their own ancestor.

;; count-female-ancestors: ftn -> num
;; Purpose: consumes a ftn and returns the number of female ancestors
(define (count-female-ancestors a-ftn)
 (cond
 [(empty? a-ftn) 0]
 [else
 (cond

 [(empty? (ftn-mother a-ftn) (count-female-ancestors (ftn-
father a-ftn))]
 [else (+ 1

 (count-female-ancestors (ftn-mother a-ftn))
 (count-female-ancestors (ftn-father a-ftn)))])]

))

Is this ok? No, it violates one of the rules of COMP 210–-one discussed in
the book that I haven't hit on heavily in class.

A program should only look inside one data definition. If you need to
look inside more than one data-definition, use a second function–-a
helper function. The code comes out cleaner; down the road, it is
easier to understand and easier to modify.

Done without a helper function
because the actual function is trivial.

This version of count-female-ancestors looks inside both a-ftn and
(ftn-mother a-ftn). Doing so leads to all that mess in the else case of the
outer cond.

Following the rule produces a somewhat simpler version of count-female
ancestors.

;; count-mother: ftn -> num
;; Pupose: determine how many ancestors to add for current mother
(define (count-mother a-ftn)
 (cond
 [(emtpy? a-ftn) 0]
 [else 1]
))

;; count-female-ancestors: ftn -> num
;; Purpose: consumes a ftn and returns the number of female ancestors
(define (count-female-ancestors a-ftn)
 (cond
 [(empty? a-ftn) 0]
 [else
 (+ 1 (count-mother (ftn-mother a-ftn)

 (count-female-ancestors (ftn-mother a-ftn))
 (count-female-ancestors (ftn-father a-ftn)))]

))

This is much cleaner.

What if we wanted to only count blue-eyed female ancestors? What must
we change? Only the helper function!

;; count-if-blue-eyes: ftn -> num
;; Purpose: returns 1 if the ftn has blue eyes, 0 otherwise
(define (count-if-blue-eyes a-ftn)
 (cond
 [(symbol=? 'blue (ftn-eyes a-ftn)) 1]
 [else 0]
))

;; count-mother: ftn -> num
;; Pupose: determine how many ancestors to add for current mother
(define (count-mother a-ftn)
 (cond
 [(emtpy? a-ftn) 0]
 [else (count-if-blue-eyes a-ftn)]
))

Is this just a matter of esthetics? To some extent, it is. This is where the art
comes into programming. The decomposition of the problem into two
functions produces a clean, crisp, understandable separation of concerns.
The program count-female-ancestors processes the item passed to it. The
program count-mother processes the item passed to it. To accomplish its
job, count-female-ancestors uses both a recursive call on itself and the call to
count-mother. Notice that count-mother is the only place where a number
other than zero gets added into the count. The decomposition rule had the
effect of separating out the search criterion from the mechanism that guides
the search. The result is a cleaner, more readable, more "elegant."

