
COMP 210, FALL 2000
Lecture 11: Moving Beyond Lists

Reminders:
• Homework assignment next Friday 9/30/00
• Exam will be 9/27/2000, in class–closed-notes, closed-book
• Review will be Monday at 8pm, location to be announced

Review
⇒ Talked about programs that deal with counting numbers (+ 0).

Design Methodology (Review)
Six steps in the methodology. See page 128 in the book.

<You are responsible for this lecture on the second exam>

Working with Mixed Data
By now you should be comfortable working with lists and with recursion.
This gives us the foundation we need to start designing programs that
operate over more complex data structures. Today, we'll start by working
with family trees.

This family tree depicts three generations of a family. Arrows run from
child to parent, so Mary's parents are Ann and Joe, Ann's parents are Susan
and Tom, and Pat and Mike are Ann's siblings.

How might we write a data definition that allows us to represent these family
trees in Scheme? (Recall that we used a list to represent recipes.) This is
where I think Computer Science gets fun–-devising new and effective ways
to represent complex kinds of information.

Mike

Susan

Pat

Tom

Mary

Ann Joe

Start of the second third of
COMP 210 –- the first
lecture for the second exam.

;; a ftn (for family-tree node) is either
;; – a symbol, or
;; – (make-ftn name father mother)
;; where name is a symbol and father & mother are both ftns
(define-struct ftn (name mother father))

;; Examples
'Mary
(make-ftn 'Ann 'Susan 'Tom)
(make-ftn 'Mary (make-ftn 'Ann 'Susan 'Tom) 'Joe)
(make-ftn 'Pat 'Susan 'Tom)
(make-ftn 'Mike 'Susan 'Tom)

Designing Programs for FTNs
What would the template for this ftn contain?

(define (f … a-ftn …)
 (cond
 [(symbol? a-ftn) …]
 [(ftn? a-ftn) …

(ftn-name a-ftn) …
(f (ftn-mother a-ftn)) …
(f (ftn-father a-ftn)) …]

))

Let's write a program in-family? that consumes an ftn and a symbol and
produces a boolean that indicates whether or not a person with that name is
in the family tree.

;; in-family?: ftn symbol � boolean
;; Purpose: determine if the symbol is in the ftn
;; return true if found and false otherwise
(define (in-family? a-ftn kin) …)

Next, we can copy the template over and fill it in.

(define (in-family? a-ftn kin)
 (cond
 [(symbol? a-ftn) (symbol=? a-ftn kin)]
 [(ftn? a-ftn)

 (or
(symbol=? (ftn-name a-ftn) kin)
(in-family? (ftn-mother a-ftn) kin)
(in-family? (ftn-father a-ftn) kin)
)]))

Should we consider writing a helper function to compare the names? After
all, the function occurs in multiple places. The function would look
something like

(define (compare-names n1 n2)
 (symbol=? n1 n2))

This function looks a little ridiculous. It simply passes n1 and n2 on to the
built-in function symbol=? and returns the result. Why would we build a
helper function for that?

Well, with name implemented as a symbol, writing compare-names will
make little sense. If, however, names were, themselves, compound objects
where the equality test required use of selector functions, or application of
multiple equality tests, then abstracting out this function into a helper like
compare-names would make sense.

Sometimes, you can see these coming. More often, you will discover the
need for a helper function like compare-names as you are writing the code
that needs help. You should still go ahead, create the helper function, and
use it to simplify the code. Using a helper function to replace short but
complex sequences of code that are repeated makes the resulting code easier
to read. It also centralizes the knowledge and control into the helper
function–-in the sense that a later change can be made in one place, rather
than in many places. This should, in principle, lead to software that is easier
to understand, to modify, and to maintain.

If all of the tests on a two-digit year had been isolated into a single helper
function, or even a couple (for = < & >), the Y2k problem would have been
much easier to fix.]

We can use or to
check all three
possibilities in a
single function
call, producing the
boolean or of the
answers.

To finish up with in-family? on this version of family trees, let’s apply the
program to some of our example data.

(in-family? ‘Joe ‘Keith)
⇒ (cond
 [(symbol? ‘Joe) (symbol=? ‘Joe ‘Keith)]
 [(ftn? ‘Joe)

 (or
(symbol=? (ftn-name ‘Joe) ‘Keith)
(in-family? (ftn-mother ‘Joe) ‘Keith)
(in-family? (ftn-father ‘Joe) ‘Keith)
)]))

⇒ (cond
 [true (symbol=? ‘Joe ‘Keith)]
 [(ftn? ‘Joe)

 (or
(symbol=? (ftn-name ‘Joe) ‘Keith)
(in-family? (ftn-mother ‘Joe) ‘Keith)
(in-family? (ftn-father ‘Joe) ‘Keith)

)]))

⇒ true (symbol=? ‘Joe ‘Keith)]

⇒ (symbol=? ‘Joe ‘Keith)

⇒ false

What about a more complex example?

(in-family?
(make-ftn 'Mary (make-ftn 'Ann 'Susan 'Tom) 'Joe)
‘Keith)

⇒ (cond
 [(symbol? (make-ftn 'Mary (make-ftn 'Ann 'Susan 'Tom)

 'Joe))
 (symbol=? a-ftn ‘Keith)]
 [(ftn? (make-ftn 'Mary (make-ftn 'Ann 'Susan 'Tom) 'Joe)

(or (symbol=? (ftn-name
 (make-ftn 'Mary

(make-ftn 'Ann 'Susan 'Tom)
'Joe))

 ‘Keith)
 (in-family? (ftn-mother

 (make-ftn 'Mary
 (make-ftn 'Ann 'Susan 'Tom)
 'Joe))

 ‘Keith)
 (in-family? (ftn-father

 (make-ftn 'Mary
 (make-ftn 'Ann 'Susan 'Tom)
 'Joe))

 ‘Keith))])

⇒ (cond
[false (symbol=? a-ftn ‘Keith)]
[(ftn? (make-ftn 'Mary (make-ftn 'Ann 'Susan 'Tom) 'Joe)

 (or (symbol=? ‘Mary ‘Keith)
 (in-family? (make-ftn 'Ann 'Susan 'Tom) ‘Keith)
 (in-family? 'Joe ‘Keith))])

⇒ [true (or (symbol=? ‘Mary ‘Keith)
 (in-family? (make-ftn 'Ann 'Susan 'Tom) ‘Keith)
 (in-family? 'Joe ‘Keith))]

⇒ (or (symbol=? ‘Mary ‘Keith)
 (in-family? (make-ftn 'Ann 'Susan 'Tom) ‘Keith)

 (in-family? 'Joe ‘Keith))

⇒ (or false
 (cond

 [(symbol? (make-ftn 'Ann 'Susan 'Tom))
 (symbol=? (make-ftn 'Ann 'Susan 'Tom) ‘Keith)]
 [(ftn? (make-ftn 'Ann 'Susan 'Tom))

 (or
 (symbol=? (ftn-name (make-ftn 'Ann 'Susan 'Tom))
 ‘Keith)
 (in-family? (ftn-mother (make-ftn 'Ann 'Susan

'Tom))
‘Keith)

 (in-family? (ftn-father (make-ftn 'Ann 'Susan
'Tom))

‘Keith)

)])
 (in-family? 'Joe ‘Keith)
)

⇒ (or false
 (cond

 [false (symbol=? (make-ftn 'Ann 'Susan 'Tom) ‘Keith)]
 [(ftn? (make-ftn 'Ann 'Susan 'Tom))

 (or
 (symbol=? (ftn-name (make-ftn 'Ann 'Susan 'Tom))
 ‘Keith)
 (in-family? (ftn-mother (make-ftn 'Ann 'Susan

'Tom))
‘Keith)

 (in-family? (ftn-father (make-ftn 'Ann 'Susan
'Tom))

‘Keith)

)])
 (in-family? 'Joe ‘Keith)
)

⇒ (or false
 (cond

 [true
 (or

 (symbol=? (ftn-name (make-ftn 'Ann 'Susan 'Tom))
 ‘Keith)
 (in-family? (ftn-mother (make-ftn 'Ann 'Susan

'Tom))
‘Keith)

 (in-family? (ftn-father (make-ftn 'Ann 'Susan
'Tom))

‘Keith)

)])
 (in-family? 'Joe ‘Keith)
)

⇒ (or false
 (or (symbol=? (ftn-name (make-ftn 'Ann 'Susan 'Tom))

 ‘Keith)
 (in-family? (ftn-mother (make-ftn 'Ann 'Susan 'Tom))

‘Keith)
 (in-family? (ftn-father (make-ftn 'Ann 'Susan 'Tom))

‘Keith)

)
 (in-family? 'Joe ‘Keith)
)

⇒ (or false
 (or (symbol=? 'Ann ‘Keith)
 (in-family? 'Susan ‘Keith)
 (in-family? 'Tom ‘Keith))

(in-family? 'Joe ‘Keith)
)

⇒ (or false
 (or false false false)

false)

⇒ false

These all evaluate to
false. It just takes a
while, expanding each
call to in-family? and
working it through.
We’ve done enough to
make the point; the rest
would be painful!

