Industrial View of Process Control

Dave Hokanson

[1] Proprietary Information For Authorized Company Use Only

Outline

- Who am I? What Do I Do?
- Intro to Industrial Control Engineering
 - Control centers & personnel
 - Distributed Control Systems
 - What control engineers do
- Models
- An extreme industrial control perspective
 - Why it is wrong
 - Modern uses of
 - LaPlace Transforms
 - Z-Transforms
 - Frequency Analysis
- If we have time...
 - An short 1960s film from IBM film "Computer Control of a Catalytic Cracking Unit"

[2] Proprietary Information For Authorized Company Use Only

Who am I? What do I do?

- "I'm Dave Hokanson, and I'm a process control engineer".
 - Rice BSChE / MChE
 - Taught sections of the process control course (and before that, the design course) dating back to 1984.
 - I'll be giving a series of 4 lectures on process control design and an intro to industrial multivariable control in November.
 - Joined Exxon Chem / ExxonMobil Chem at graduation (1978), first in process design, then with a "rotational assignment" in process control (1980).
 - Still with process control, but in much different form...
 - Had assignments at the Baytown Chem Plant (control engineer, then lead control engineer),
 - Central Engineering (first DMCs within Exxon)
 - Control supervisor / leader at Rotterdam and Singapore
 - Since 1997 back in Central engineering leading the DMC effort.

What is DMC?

- Dynamic Matrix Control (DMC) an industrial form of model-predictive, multi-variable control.
- Originally developed by Charlie Cutler
 - Originally at Shell, formed DMC Corp in 1984
 - Sold to AspenTech in 1996
 - However, heeeee's back!!

Cutler Technology Corporation

We Know DMC Because We Invented It!

[стс]

[4] Proprietary Information For Authorized Company Use Only

Industrial Control

- Refineries and most Chem plants are large and complex
- High revenue per employee (i.e., few people)
- Run 24 hours, sometimes 5-6 years between downtimes (called "Turn-Arounds")
- Control centers are usually centralized and can be far away from the process equipment
 - Run by "Console operators" the man / woman who sits behind the computer screens, watching trends and monitoring the unit performance.
 - There are "outside operators" who do "rounds" checking on the equipment, moving manually operated valves, starting / stopping pumps / fans/etc.

[5] Proprietary Information For Authorized Company Use Only

Modern Control Centers

[6] Proprietary Information For Authorized Company Use Only

What does a Control Engineer do?

- Design control strategies at process design phase
 - We'll be looking at this later
 - Specify measurements and final elements, along with basic regulatory control structure (i.e., control a level in a vessel)

• Design control strategies after unit is running

- Basic regulatory
 - PID
 - Single-Input / Single-Output (SISO)
- Advanced regulatory
 - Cascade & feed-forward control
 - Multiple Input / Single Output (MISO)
- Advanced Control / multi-variable, model-based control
 - DMC
 - MIMO
- Real-Time Optimization
 - First Principal, steady-state models reconciled with the plant

• What are the tools:

- Distributed Control System (DCS) links measurements with final control elements
- Advanced computing platforms
- Software packages

[7] Proprietary Information For Authorized Company Use Only

DCS – Engineer's Work Station

[8] Proprietary Information For Authorized Company Use Only

Models

- "All models are wrong; some are useful"
- If you can model the process, you can control it!!
 - The world does not live in steady-state!!
 - Hence, many dynamic models are "useful".
- Some industrial process control uses of models:
 - PID tuning & simple model-based control
 - 1st order plus deadtime
 - DMC and similar model-based control
 - Unit step responses (in vector arrays) derived using various model ID packages (FIR, ARIMA, SubSpace)
 - State-Space Controllers
 - State Space Models (can be derived by "SubSpace" model ID packages)
 - Non-Linear Model-based control
 - Neural Nets or 1st principal dynamic models
 - Dynamic Simulations (for process analysis or operator training)
 - 1st principal dynamic models.
 - Real-Time Optimization
 - 1st principal, steady-state models

An Extreme Control Perspective

Robert V. Bartman

- ProControl, Inc.
- Process Control Education and Technology

• A good friend / former mentor at Exxon

- We did a lot of joint development together on Exxon's first multivariable, model-based control
- Bob charges a lot of money \$12k for 96 hour course
 - Elapsed-time, not credit hours!
 - Makes Rice look very cheap!
- "Money-back guarantee if we mention such stalwarts as LaPlace transforms, or z-transforms, or Nyquist diagrams, or Bode plots, or Ziegler-Nichols tuning, in other than critically-humorous terms."
- While he's an excellent teacher and a very humorous guy, he's wrong if you want to understand the basics process control, particularly as our field continues to develop

[10] Proprietary Information For Authorized Company Use Only

LaPlace Transforms

- Recently had to look at the tuning on a Foxboro control system.
 - Their PID algorithm is a bit different, and I went to the book to understand what it was doing:

 $m_b = \frac{100}{P} \left(\left(\frac{1}{Is} + A\right) r - \left(\frac{1}{Is} + 1\right) c_f \right) f_r + b$

 $\tau = 0$

• Proportional and integral (PI):

• Proportional, integral and derivative (PID):

$$\begin{split} m_b &= \frac{100}{P} \bigg(\bigg(\frac{1}{Is} + A \bigg) r - \bigg(\frac{1}{Is} + 1 \bigg) (1 + Ds) c_f \bigg) f_r + b \\ \frac{1}{\tau} &= \bigg(\frac{1}{I} + \frac{1}{D} \bigg) K_D \end{split}$$

• Non-interacting PID (NIPID):

$$m_b = \frac{100}{P} \left(\left(\frac{1}{Is} + A \right) r - \left(\frac{1}{Is} + 1 + Ds \right) c_f \right) f_r + b$$

$$\tau = \frac{D}{K_D}$$

Proprietary Information For Authorized Company Use Only

[11]

More on LaPlace Transforms

- But there's more...
 - This PID has a built in filter for the Derivative Term
 - Good idea
 - What type??
 - In the above expressions of measurement filter:

$$c_f = \frac{c}{1 + \tau s + 0.5(\tau s)^2}$$

• Bottom line: An industrial process control engineer needs to be able to speak this language.

[12] Proprietary Information For Authorized Company Use Only

Z-Transforms

- Used frequently in "the days of old" for coding control algorithms (filters, PID controls, etc)
 - Also used to understand "aliasing" loss of data in a sampled data system – due mostly to slow sampling
- Now used for mostly in various forms of ARX modeling
 - Here's a formula directly from a fundamental paper on ARX modeling by Yucai Zhu of Tai Ji Control

$$y(t) = G(z^{-1})u(t) + H(z^{-1})e(t)$$

Another language that needs to be understood.

[13] Proprietary Information For Authorized Company Use Only

Bode Plots / Frequency Analysis

- Up until about 6-8 years ago, I agreed with my old mentor Bob Bartman on the usefulness of frequency analysis
- Then the usefulness for this technique became once again useful in two areas
 - Control Performance Monitoring
 - Model quality from a model identification software

[14] Proprietary Information For Authorized Company Use Only

Frequency Analysis of a 3x4 Model

September 29, 2006

EΣ ⁄onMobi Chemical

Control Monitoring Tools

To Summarize

Control Engineering can be a fun job

- It's a chance to make a direct impact on the plant operation
- In our business "No money is made until a valve is moved"
 - We move valves!

Technology continues to evolve

- What we thought was useless is now useful!

Bottom line:

- Keep an open mind as you move from the world of Process Dynamics into the world of Control
- I'll be back to cover process control design, feed forward, cascade, and an intro to multi-variable, model-based control (e.g., DMC)

[17] Proprietary Information For Authorized Company Use Only