
Chapter 5  Multiphase Pore Fluid Distribution 
 
Reading assignment:  Chapter 3 in L. W. Lake, Enhanced Oil Recovery. 
 
 So far we have discussed rock properties without regard to the fluid other 
than that it was a single phase.  When multiple phases exist in a rock or soil we 
need to be concerned about how the fluids are distributed in the pore space and 
how they will interfere (or assist) with the flow of when more than one phase 
exist.  The first thing that we will see is each (immiscible) fluid has a pressure 
that is distinct from that of the other fluid(s) because of the curvature of the 
interfaces.  This difference in pressure is called the capillary pressure and is 
usually shown as a function of the saturation of one of the phases.  The 
interference in the flow is represented by the relative permeability and is usually 
shown as a function of saturation.  The relative permeability of a phase has 
contributions to flow only from the fraction of that phase that is connected.  The 
disconnected saturation of a phase is called the trapped saturation.  The 
saturation at where the relative permeability goes to zero is called the residual 
saturation and is usually equal to the trapped saturation for a nonwetting phase. 
 
Capillarity 
 
Surface and interfacial tension 
 
 We know from our own experience that the pressure inside a balloon is 
greater than the pressure outside.  We attribute the difference in pressure to the 
tension of the stretched rubber sheet.  In the case of a rubber sheet, the tension 
is a function of how much it has been stretched from some equilibrium shape.  
There is also a tension between two immiscible fluid phases.  The origin of the 
tension between immiscible phases is due to the dissimilarity of the 
intermolecular forces between the molecules comprising the phases.  Molecules 
(of nonsurfactive material) have lower net energy when it is surrounded by its 
own kind rather than when it is at an interface and mingling with the molecules of 
the other phase.  Thus the tendency of molecules to leave the interface and 
move to the interior of the phase creates a force tending to contract the interface 
to a smaller area.  This creates a tension that is dependent only on the presence 
of the interface and not on any history of how much it had been stretched.  
Alternatively, the interfacial region has an excess energy per unit area and the 
fluids will spontaneously try to reduce the interfacial area if it is not constrained.  
It is because of these two alternative views that the surface tension and 
interfacial tension have been expressed as either dyne/cm , a tension per unit 
length, or erg/cm2, an energy per unit area.  Since an erg has the same units as 
dyne⋅cm it is easy to see that these are equivalent.  The choice of units in the SI 
units is mN/m or mJ/m2, both equivalent to each other and to the cgs units.  The 
tension is called surface tension when one phase is a gas or vapor phase.  
When both phases are liquid it is called interfacial tension.  The concept of 
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surface energy also applies to a solid-fluid interface but in this case it is called 
surface energy.   
 
Young - Laplace Equation 
 
 The relation between the pressure difference across an interface and 
tension can be determined by displacing the interface an infinitesimal distance in 
the direction of the normal to the interface.  When the system is in mechanical 
equilibrium, the work to stretch (or contract) the interface is balanced by the 
pressure - volume work done in displacing the interface.  The equation for 
mechanical equilibrium across a fluid interface is the Young - Laplace equation. 
 
 2p HσΔ =  
 
where σ is the surface or interfacial tension, H is the mean curvature, and Δp is 
the pressure difference across the interface such that the higher pressure is on 
the concave side of the interface.  The mean curvature is the average of the 
principal curvatures (Aris 1962) or it can be expressed as a function of the radius 
of curvatures. 
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Substituting into the Young - Laplace 
equation, we have: 
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Pressure drop in some capillary systems 
 
 We will be able to understand capillary phenomena in porous media much 
better if we see how the capillary pressure changes in some elementary 
geometry.  In the following, we will consider one fluid to be wetting and the other 
fluid nonwetting.  Also the first two systems will be axial-symmetric so the two 
radii of curvature are equal.  Consider first Fig. 5.1 where a nonwetting fluids 
enters a circular pore from a bulk reservoir.  The capillary pressure will increase 
with volume until it reaches a limiting value of 2σ/R. 

Volume

Pc

Nonwetting
Phase

Wetting
Phase

 
Fig. 5.1 Nonwetting fluid entering pore 
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 Another example is a nonwetting fluid exiting 
a circular pore and entering a large reservoir filled 
with the wetting fluid as in Fig. 5.2.  This is similar to 
blowing bubbles from a glass straw.  Suppose the 
interface is flat at the exit of the pore after the 
previous bubble detached.  If the non wetting phase 
is pumped with a controlled volumetric rate, the 
pressure will first increase as the interface increases 
in a curvature from zero (flat) to that of a 
hemisphere.  The pressure will then decrease as 
the interface expands into a surface of a growing 
sphere.  If the nonwetting fluid was a reservoir with 
an increasing pressure rather than at a constant 
volumetric rate, the bubble (or drop) will first grow 
slowly corresponding to the rate of pressure 
increase until it reaches the maximum pressure upon reaching the hemispherical 
shape and then it will suddenly grow in size. 

Nonwetting
Phase

Volume

Pc

 
Fig. 5.2 Nonwetting fluid 
exiting pore 

 
 Now consider a square capillary into which a nonwetting phase has 
entered.  The capillary pressure at which the nonwetting fluid first enters the 
square capillary is approximately 
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Fig. 5.3  
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As the capillary pressure increases above this value, the wetting phase (shaded)  
will be pushed further into the corners as the radius of curvature of the interface 
decreases.  (When the nonwetting phase enters at the above capillary pressure, 
the wetting phase will already be pushed into the corners compared to Fig. 5.3.)  
Suppose now the wetting phase is allowed to flow back along the corners without 
the end of the drop exiting the capillary.  If the capillary pressure is now then 
decreased below Pcso, the capillary pressure of a cylindrical filament that just 
touches the capillary walls, 
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the interface will pull away from the walls of 
the capillary.  The nonwetting phase is now a 
thin filament that is unsupported by the walls.  
the nonwetting phase will neck down in some places and will swell in other 
places until it is supported by the walls of the capillary.  The necking down is 

This configuration is unstable and 

 
 
Fig. 5.4 Side view after snap-off 
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unstable and the nonwetting phase will snap-off into droplets or bubbles of 
disconnected nonwetting phase. 
 
Nonwetting phase trapping 
 
 Suppose the porous 
medium is made up of pore 
bodies and pore necks of many 
different sizes as shown in Fig. 
5.5.  The medium is initially 
saturated with the wetting phase.  
The nonwetting phase is first 
allowed to enter only the largest 
pores as in 5.5a and then the 
capillary pressure reduced to 
zero.  Nonwetting phase will be 
trapped as in 5.5b.  With 
additional cycles with increasing 
initial nonwetting saturation 
additional trapping will occur as in 
5.5d and 5.5f.  Such an 
experiment with increasing initial 
saturation of the nonwetting 
phase saturation measuring the 
residual saturation at each initial 
saturation generates an initial - 
residual saturation curve as in 
Fig. 5.6.  This curve probes the 
volume of nonwetting phase 
trapping sites as a function of 
entering increasingly finer pores.  
This curve can be used to 
determine the  saturation of 
nonwetting phase that is trapped 
at a given saturation if information 
is available on the maximum 
nonwetting saturation attained, i.e., 
memory of its history is available. 

 
Fig 5.5 Trapping in initial -  residual saturation 
cycles (Stegemeier 1977) 

 
Fig. 5.6  Typical nonwetting phase trapping 
characteristics of some reservoir rocks 
(Stegemeier 1977) 
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Hysteresis 
 
 The initial-residual saturation curve shown in the previous section are 
usually measured by toluene-air counter-current imbibition or mercury-air 
measurements.  The toluene-air measurements are more economical and are 
not destructive.  With this method the cleaned, dry rock is initially saturated with 
toluene.  The initial air (nonwetting phase) saturation is established by allowing 
the sample to dry to a measured weight.  The sample is immersed in toluene and 
sufficient time is allowed for toluene to spontaneously imbibe into the sample (but 
not so long that air diffuses out of the sample).  The residual air saturation is 
determined by weighing.  This cycle is repeated for increasing initial air 
saturation. 
 
 The initial-residual saturation 
curve can also be measured when 
measuring the mercury - air capillary 
pressure curve.  Fig. 5.7 illustrates a 
typical capillary pressure hysteresis 
curve measured in the course of 
measuring the initial-residual curve.  
This figure shows that the capillary 
pressure curve is not a unique 
function of saturation.  The capillary 
pressure curve is a function of the 
saturation history.  During primary 
drainage, nonwetting phase has not 
entered pores with a pore throat 
smaller than the current value of the 
capillary pressure.  However, if the 
sample had attained a higher 
mercury saturation previously in its 
history, then there will be some 
trapped nonwetting phase in the 
smaller pore network.  Thus, the nonwetting phase saturation is higher at the 
same capillary pressure by the amount equal to the trapped nonwetting phase in 
the smaller pore network.  For example, compare curves 1, 3, and 5 in Fig. 5.7.  
A practical way to account for the hysteresis is to store a memory of the 
maximum nonwetting phase attained.  The residual saturation is a function of this 
maximum initial saturation as determined from the initial-residual curve.  The 
capillary pressure and relative permeability functions (to be introduced later) will 
be normalized to go to zero at this value of residual saturation. 

 
Fig. 5.7  Capillary pressure initial-residual 
hysteresis curves (Stegemeier 1977) 
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Capillary Desaturation 
 
 Earlier we discussed trapping of a nonwetting phase under near static 
conditions.  We may ask the question, "Would the amount trapped be the same 
under dynamic conditions?" or "If we apply a large enough pressure gradient or 
buoyancy force, can a trapped nonwetting phase be remobilized?" and "For a 
given pressure gradient, will the amount trapped and remobilized be the same?"   
 
 First lets look at the 
shape of a trapped 
nonwetting phase to ask 
what will it take to mobilize 
the "blob".  Fig. 5.8 illustrates 
such a blob that spans a few 
pore bodies.  Suppose that 
there is a pressure gradient 
that is trying to displace the 
blob from left to right.  The 
blob is being stopped from 
moving because the front of 
the blob must squeeze 
through a pore throat.  Lets 
say that the pore throat 
radius is rn.  The capillary 
pressure at the front of the 
blob must exceed the capillary entry pressure of that pore throat for the blob to 
pass through. i.e., 

 

Fig 5.8  Schematic of trapped oil "blob" (Stegemeier 
1977) 
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Suppose that the back of the blob that is a distance L away from the front is 
flattened by the pressure gradient.  The capillary pressure at the back of the blob 
is then equal to zero.  The pressure gradient within a static blob is zero.  The 
pressure gradient in the wetting phase is that due the flow of the wetting phase 
and is given by Darcy's law.  The pressure drop in the wetting phase over the 
distance L is 
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Since this is the pressure drop across the length of the blob and the capillary 
pressure at the back of the blob is zero, this must be equal to the capillary 
pressure at the front of the blob.  The criteria for mobilizing the blob is now 
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Lets express the length of the blob and the permeability in terms of the pore 
throat radius. 
 
 nL rα=  
 2

w nk rβ=  
 
Substituting into the criterion for mobilizing the blob, we have 
 

 w wu μ β
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The right side is the ratio of dimensionless quantities and the left side is a well 
known dimensionless number called the capillary number or viscous to capillary 
ratio. 
 

 vc
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σ
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If the driving force for displacement was buoyancy rather than the pressure 
gradient, the dimensionless number would be the Bond number.  Combination of 
both these driving forces results in the Brownell Katz number.  The B-K number 
and capillary number differ by a numerical factor equal to the water relative 
permeability at the residual nonwetting phase saturation.  The above is a very 
condensed discussion of oil entrapment and mobilization.  For a through 
discussion see the reviews by Stegemeier (1977), and Lake (1989). 
 
 The capillary number criterion groups the easily measured parameters.  It 
does not have parameters for the variability of the pore structure of the rock.  
Thus one would expect desaturation to occur over a range of capillary numbers 
and this range would be different for different rocks.  Fig. 5.9 has some 
measured capillary desaturation data measured by different investigators.  Fig. 
5.10 shows similar data except that 1/λrt is used instead of μ.  The difference 
between these is the relative permeability to water at the residual oil saturation.  
Fig. 5.10 using this definition for the capillary number, show the same correlation 
can be applied for the wetting phase with a small offset.  However, there is a 
conceptual difference with the "trapping" of a wetting phase.  The wetting phase 
remains continuous rather than as a "blob" when it approaches being immobile.  
The length of the wetting phase "blob" is thus equal to the length of the rock 
sample and thus the sample lenth should be a parameter in the residual wetting 
phase saturation. 
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 It may be difficult to increase the pressure gradient over several orders of 
magnitude to displace residual oil.  However, with surfactants the oil-water 
interfacial tension can be reduced from 30 mN/m to 10-3 mN/m.  Thus the 
surfactant flooding enhanced oil recovery (EOR) process. 

 

 
Fig. 5.9  Capillary desaturation curves; the curve by 
Abrams apply to dynamic trapping, the other curves 
apply to mobilization of trapped oil (Stegemeier 1977) 

 
Fig. 5.10  Capillary desaturation expressed in terms of 
the relative total mobility rather than water viscosity 
[Lake 1989 (Camilleri 1983)] 
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Relative Permeability Models 
 
Normalized Saturation for Relative Permeability and Capillary Pressure 
 
 We saw how the residual saturation can differ because of the saturation 
history or the capillary number.  The relative permeability and capillary pressure 
curves will change as the residual oil saturation is changed.  A commonly used 
approach is to express the relative permeability and capillary pressure as a 
function of the normalized saturation. 
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 The power law model for relative permeability is 
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where the coefficient is the end point relative permeability when the other phase 
is at the residual value and the exponent is commonly called the Corey exponent.  
It is approximately equal to 4.0 for the wetting phase and 2.0 for the nonwetting 
phase.  Additional models will be discussed later. 
 
Assignment 5.1  Plots of relative permeability 
 Plot oil and water relative permeability versus water saturation with linear 
and log scale for the relative permeability.  Use the following parameters: 
 
Parameter Value 
Swi 0.25 
Sor 0.25 

o
rok  1.0 
o
rwk  0.15 

nw 4.0 
no 2.0 
 
Original Model of Corey 
 
 The power law model presented earlier is often called the  "Corey model" 
even though it is not the same as the model originally presented by A. T. Corey 
in 1954.  A number of investigators prior to that time had been attempting to 
correlate the relative permeability curves with the pore size distribution 
determined from the capillary pressure curves and a saturation dependent 
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tortuosity function.  For example, the equation used by Burdine appears as 
follows: 
 

 
2 '

0
1 ' 2

0
1

oS

o co or
ro

or o c

dS PS Sk
S dS P

⎛ ⎞−
= ⎜ ⎟−⎝ ⎠

∫
∫

2

 

 

 

1 ' 22

1 ' 2

0

1 o
o cSo or

rg
m or o c

dS PS Sk
S S dS P

⎡ ⎤⎛ ⎞−
= −⎢ ⎥⎜ ⎟−⎝ ⎠⎣ ⎦

∫
∫

 

where 
So is the oil (wetting phase) saturation 
Sor is the residual oil (wetting phase) saturation 
Sm is the lowest oil (wetting phase) saturation at which the gas (nonwetting 
 phase) tortuosity is infinite, i.e., 1 - Sgr or 1 - residual nonwetting phase 
 
 Corey sought to measure gas (nonwetting phase) relative permeability and 
estimate the oil (wetting phase) relative permeability.  He observed that 1/Pc2 
could be approximated as proportional to So - Sor for So > Sor for the high  
permeability rocks he was examining.  His resulting equations for the oil and gas 
relative permeabilities are as follows: 
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These equations have two parameters, Sor and Sm.  Keep in mind that oil is the 
wetting phase in a oil-gas system. 
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 Fig. 5.11 compares his 
measured and calculated oil (wetting 
phase) relative permeabilities.  These 
results show that the wetting phase 
relative permeability can be modeled 
with the power law model with the 
exponent equal to 4.0 and an initial 
100% wetting phase saturation 
where the end point relative 
permeability is equal to 1.0.  Corey 
was not attempting to verify his 
model of the gas (nonwetting phase) 
relative permeability.  However, if you 
compare his krg equation with the 
power law model, it appears like the 
power law model with an exponent 
equal to 2.0 and another factor that is 
close to unity except for high wetting 
phase saturation.  The power law 
model is commonly called the "Corey 
model" with the exponents as estimated 
parameters.  Notice that in Fig. 5.11 the 
value of Sor is 0.28 but yet the curve 
appears to go to zero at a liquid saturation 
of 0.45.  When relative permeability is 
plotted on a linear scale, the small values of 
relative permeability become 
indistinguishable from zero.  The relative 
permeability should be plotted on a 
logarithmic scale to examine the small 
values of relative permeability.  Fig. 5.12 
shows a curve plotted on a logarithmic 
scale.  The part of the curve below 0.01 
would have been indistinguishable from  
zero on a linear plot.

 
Fig. 5.11 Relative permeabilities for consolidated 
sand (Corey 1954) 
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Fig. 5.12  Appearance of relative 
permeability with logarithmic scale 
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Nonwetting  Model 
 
 The power law model differs slightly from the original nonwetting phase 
relative permeability model of Corey.  When the pore size distribution is very 
wide (such as when a significant amount of clays are present), the nonwetting 
phase relative permeability does not change much with increasing wetting phase 
saturation at small wetting phase saturation.  The wetting phase is occupying the 
smaller pores which contributed little to the permeability of the nonwetting phase.  
In this case, the nonwetting phase relative permeability is S shaped on a linear 
plot.  Proper description of the shape of the oil (or gas) relative permeability 
curve at high oil (or gas) saturation is important in the calculation of the original 
productivity of wells that are  in the capillary transition zone.  The shape of the 
curve for high nonwetting phase saturation can be modified from the power law 
model to fit the S shaped part of the curve as follows. 
 
 Suppose that below some nonwetting phase saturation, Sx, the relative 
permeability can be described by the power law model or Corey model.  At high 
nonwetting phase saturation, the reduction of the nonwetting phase relative 
permeability should be approximately equal to the wetting phase relative 
permeability.  Corey has shown that the wetting phase relative permeability can 
be described by the power law model.  Thus we should expect the reduction in 
the nonwetting phase relative permeability at high nonwetting phase saturation to 
approach the reduced wetting phase saturation raised to an exponent.  The types 
of behavior below and above Sx should blend together with no discontinuity in 
the slope of the relative permeability.  A model that meets these requirements is 
as follows. 
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where 
 
Sx nonwetting saturation where the models change 
mo exponent for wetting phase (adjustable parameter) 
no Corey exponent for nonwetting phase below Sx 
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The following figures illustrate the nonwetting phase relative permeability model. 
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Fig. 5.13  Exponents for the nonwet relative permeability 
model 

Nonwet Model

Saturation

R
e
l
a
t
i
v
e
 
P
e
r
m
e

0.00

0.20

0.40

0.60

0.80

1.00

0 0.2 0.4 0.6 0.8 1

Corey 
Model

Nonwet
ModelSx

Snwi = 0.9
Snwr = 0.2
krEP = 1.0
no = 3.0
mo=2.0

Flowing Measurements

 
Fig. 5.14  Nonwet relative permeability model 
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Effect of Wettability 
 
 So far we have assumed that 
the systems are water-wet.  This is 
generally the case with clean 
sandstone and refined oil.  However, 
crude oils have surface active 
components that have varying degree 
of tendency to adsorb on the mineral 
surfaces cause the crude oil to adhere 
to the pore walls.  An extreme case of 
reversal of wettability from water-wet 
to oil-wet is illustrated in Fig. 5.15.  
The wetting phase occupy the smaller 
pores and thus have a smaller relative 
permeability for the same saturation.  
Also, if the Corey exponents were 
calculated, a larger Corey exponent 
would be expected for the wetting 
phase. 
 
 Systems with crude oil have 
varying degrees of wettability.  Fig. 
5.16 illustrates the remaining oil 
saturation in a core as a function of 
the wetting index and pore volumes 
of water throughput.  The wettability 
index is -1.0 for oil-wet and +1.0 for 
water-wet conditions.  When the 
system is water-wet the oil is trapped 
by the snap-off mechanism.  The oil 
production stops abruptly soon after 
water breakthrough.  When the 
system is oil-wet the remaining oil is 
in the smaller pores which make a 
small contribution to the relative 
permeability for a given saturation.    
The oil production tails out over many 
pore volumes of throughput because 
the oil relative permeability is small 
but nonzero.  When the system is 
intermediate in wetting index, snap-
off is inhibited and the oil is less likely 
to be in the smaller pores and thus less oil remains after waterflooding. 

 
Fig. 5.15  Steady state relative permeability 
with heptane and brine in alundum core. 
The oil wet core was treated with organo-
chlorosilanes (Jennings 1957) 

 
Fig. 5.16  Remaining oil saturation after 
waterflooding (Jadhunandan and Morrow, 1991) 

Absolute and End Point Permeability 
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 Relative permeability is formally defined as the ratio of the permeability to 
a phase divided by the absolute permeability.  Absolute permeability is defined as 
the permeability to a single phase.  In the absence of clays, the single phase 
permeability measured with brine, refined oil, or gas (properly extrapolated to 
infinite pressure) should not differ.  However, it practice the brine permeability is 
usually less than the single phase permeability to air or refined oil because the 
clays collapse in the absence of an aqueous phase. 
 
 Many companies normalize the relative permeability with respect to the oil  
permeability at the initial oil saturation (i.e., at "connate" water saturation).  This 
will result in the end point relative permeability for oil being identically equal to 
1.0.  People who use this definition of relative permeability argue that this 
normalizes the oil permeability with respect to the conditions of the reservoir 
before waterflooding.  However, this creates difficulties when comparing relative 
permeabilities as a function of different initial oil saturation or different wettability 
because both will cause a change in the permeability to oil at initial saturation 
even though the absolute permeability is not changing.  For example, suppose 
the relative permeability are measured with different initial oil saturation.  If the 
relative permeabilities are normalized with respect to the oil permeability at initial 
saturation, then the water relative permeability curves will appear to change with 
different initial oil saturation. 
 
Three Phase Relative Permeability 
 
 Three phase relative permeability measurements and models have given 
widely different results since the 1950's.  It is generally accepted that in water-
wet systems, the water (wetting phase) and gas (nonwetting phase) can be 
express as a function of their own saturation.  However, the oil phase is the 
nonwetting phase in a water-oil system and is the wetting phase of a gas-oil 
system in the presence of connate (or irreducible) water saturation.  The 
literature has numerous models to estimate three phase oil relative permeability 
from water-oil and gas-oil (at connate water) curves.  A recent survey of the 
models by Baker lead him conclude that "there are many problems remaining to 
be solved" and recommended that the three phase oil relative permeability be 
calculated by straight line interpolation between the water-oil and gas-oil at 
connate water data.  The resulting oil isoperm contours will look as in Fig.  5.17. 
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Fig. 5.17  Three phase oil isoperms using linear 
interpolation of the two phase data (Baker 1988) 

 
Measurement Methods 
 
 Measurement  
 
 Unsteady State Method  The unsteady state method is the classic 
method used to measure relative permeability.  The core sample at a uniform  
initial oil is water flooded (or gas flooded) while the oil and water (or gas) 
production and the pressure drop across the core is monitored.  This method is 
based on the Buckley-Leverett theory of two phase displacement, the Welge 
method to estimate outflow end saturation from the cumulative production, and 
the Johnson, Bossler, Neumann method to obtain individual relative permeability 
rather than the ratio by using the pressure information. 
 
 An advantage of the unsteady state method is that it is rapid and the 
apparatus is simple.  Disadvantages are that: (1) flow may not be one 
dimensional due to viscous fingering or gravity segregation, (2) if the mobility 
ratio is favorable, then much of the saturation may be in the shock region from 
which no relative permeability information can be obtained, and (3) hold up of the 
wetting phase at the outflow end tends to retard the flow of the wetting phase by 
capillary pressure effects. 
 
 Steady State Method  The steady state method gives the most accurate 
measurement of relative permeability.  The only disadvantage of a properly 
designed equipment and technique is that the equipment is complex and the 
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measurements are time consuming.  A 
early steady state apparatus is 
illustrated in Fig. 5.18.  Water and oil (or 
gas and oil or three phases) are 
injected at  controlled ratio and 
measurements of pressure drop and 
saturation are made when steady state 
is reached.  Advances in technology 
have been made in measurements of 
saturation.  Current methods include X-
ray CT scanning, X-ray or gamma ray 
attenuation and recycling of the fluids.  
The end section serves to displace the 
capillary end effect mentioned earlier 
beyond the test section.  The test 
section can include several core plug 
samples butted together to increase the 
length of the test section.  A combined 
method uses the steady state method for all water/oil ratios and a unsteady state 
interpretation for the final, 100% water injection.  

 
Fig. 5.18  Steady state apparatus with 
electrical resistivity measurements to 
estimate saturation [Honarpour, Koederitz, 
Harvey 1986 (Geffen, et al 1951)] 

 
Centrifuge Measurements 
 
  Fig. 5.19 illustrates an early 
automated centrifuge for measuring 
relative permeability and centrifuge.  
The method used centrifugal 
acceleration and buoyancy as the 
driving force for displacement.  The 
core holder can be arranged so that 
either the more dense or the less 
dense fluid is the displaced phase.  
Recent (Hirasaki et al 1992) 
improvements include improved 
electronics to measure speed and 
production at rates up to 10 Hz to 
interpret the early production.  The 
interpretation software now includes 
the effects of the mobility of the 
invading phase and the effects of 
capillary pressure.   
 
 The advantage of the 
centrifuge method is speed; capillary pressures and relative permeability can be 
measured on three or six core samples simultaneously.  An disadvantage is that 
the invading phase relative permeability can not be simultaneously measured 

 
Fig. 5.19 Illustration of early centrifuge relative 
permeability and capillary pressure device 
[Honarpour et al 1986 (O'Mera and Lease 1983)] 
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with accuracy and the invading phase relative permeability is measured by 
reversing the displacement.  Fig. 5.20 compares relative permeability curves 
measured by the centrifuge compared with steady state measurements.  These 
results were before the nonwetting phase model was implemented. Also, the 
steady state measurements were normalized with respect to the initial oil 
permeability. 
 

 
Fig. 5.20  Comparison of centrifuge (curves) and steady 
state (symbols) (Hirasaki, Rohan, Dudley 1992) 
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