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We theoretically investigate the polarization, aggregation, and yield stress in carbon nanotube suspensions
under an electric field. The nanotubes are modeled as solid rods with hemispherical ends. An exact numerical
approach, which includes self-consistent Coulomb interactions within classical electrostatics, is employed to
derive nanotube surface charge densities. Two essential nanotube characteristics, i.e., large aspect ratios and
end contributions, are included together. The reliability of the model is demonstrated by comparing the calcu-
lated emerging yields against experimental data. The onsets of system parameters can be used to control the
phase transition in nanotube suspensions.
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I. INTRODUCTION

The unique characteristics of carbon nanotubes, i.e., their
size, aspect �length to diameter� ratio, stiffness, and thermal,
electronic, and transport properties, make nanotube suspen-
sions attractive for various applications. These include
nanotube-filled thermoplastic elastomers,1 nanotube
aerogels,2 cancer therapy,3 and fibers with anisotropic
conduction.4 In the specific case of liquid crystal suspen-
sions, for example, carbon nanotubes are shown to align
along a uniform liquid crystal director field,5 with possible
applications in magnetically steered electric switches.6 Nano-
tubes have been used as fillers in the liquid crystal matrix7

and are shown to control the field-off and field-on response
times and threshold voltages of liquid crystals.8 These effects
may be applicable in liquid crystal displays.

The orientation and aggregation of the nanotubes strongly
affect the properties of the suspension. Controlled phase
transition in nanotube suspensions is therefore of great im-
portance. One way to achieve phase transition is subjecting
the suspensions to electric field or electromagnetic radiation
�Fig. 1�, which dramatically changes the suspension’s vis-
coelastic response, among others. This response, i.e., the
electrorheology9 in nanotube suspensions, has been studied
in recent experiments.10–12

A necessary issue in modeling nanotube suspensions un-
der an applied electric field is the proper inclusion of the
nanotubes’ �longitudinal� polarizations. �For metallic nano-
tubes, whose response is dominant, transverse polarizations
are negligible in comparison.� The standard model for elec-
trorheological suspensions, which uses point dipole
approximation,13,14 cannot be used for nanotubes owing to
their large aspect ratios. Other models of nanotube longitu-
dinal polarizabilities usually neglect the end
contributions.15–17 Owing to computational limits, polariza-
tion models for entire nanotube �including its ends� that are
capable of treating realistic aspect ratios have been rather
rare.18,19 For modeling the nanotubes’ polarization, aggrega-
tion, and electrorheological behavior, including both large
aspect ratios and end contributions, however, is essential.

Here, we present an exact self-consistent method, within
classical electrostatics, to achieve this aim. The method is
based on solving an integral equation for the �continuous�
surface charge densities within a solid-rod model for the
nanotubes, in which they are treated as solid cylindrical rods
with hemispherical ends. The solid-rod model for nanotubes
is justified by their large ��1.2 TPa� Young’s modulus20 and
long ��0.1 mm� persistence length,21 the latter being much
larger than a typical nanotube’s length. Although not as so-
phisticated as ab initio17 or tight-binding16,19 treatments, our
approach has the advantage of including both large aspect
ratios and end contributions. We calculate the onsets of sys-
tem parameters for overcoming Brownian agitations. The
calculated upper bounds for the yield stress of the organized
phase of the suspensions agree well with the experimental
results.

II. MODEL AND METHOD

For metallic and semiconducting nanotubes immersed in a
nonconducting dielectric solution, the interfaces are of
conductor-dielectric �CD� and dielectric-dielectric �DD�
types, respectively. The discontinuity of electric displace-

FIG. 1. Schematic of a dispersed solution of nanotubes �a�.
Upon application of an electric field, the nanotubes become polar-
ized, align with the applied field �b�, and subsequently aggregate in
chainlike structures �c�.
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ment vector D=�E �E is the electric field� in the former case
and its continuity in the latter are used to express the poten-
tial in terms of the total charge densities at the interfaces.
These include the sum of the polarization and free charges
for the CD interfaces and the polarization charges for the DD
interfaces. By integrating the singularity that arises when the
source and field points, x� and x, coincide,22 we obtain �in SI
units�23–27

��x� = 4��0�En�x� − ��
i
�

Si,x��x
��x��

�

�n�x�� 1

�x − x��
�dS�.

�1�

Here, � is the total charge density, �0 is the vacuum permit-
tivity, and � equals 1 /2� and ��s−�e� /2���s+�e� for the CD
and DD interfaces, respectively, where �s and �e are the rela-
tive dielectric constants of the semiconducting nanotubes and
the �solvent� environment. En is the normal component of the
applied electric field, Si is the surface of the ith nanotube,
and � /�n�x� indicates the derivative with respect to the nor-
mal direction to the surface at x. We consider only dc exter-
nal fields, or ac external fields with oscillation periods much
larger than the nanotubes’ response time, and ignore the fre-
quency dependence of �s and �e. This assumption will be
made clearer shortly, after calculating the charge separation
in nanotubes under an electric field, which provides an esti-
mate for the response time of the nanotubes.

Equation �1� is a Fredholm integral equation of the second
kind and can be exactly solved by numerical
discretization.26,27 The proper treatment of the singularity at
x�=x is essential for accurate solutions, especially for nano-
tubes with large aspect ratios. We use qualocation
discretization28–30 with analytic integration over discrete
panels31 to ensure accuracy. This combination provides a
very powerful solution strategy free from instabilities and
divergences. As two simple tests, we checked that our calcu-
lated surface charge densities for a dielectric sphere and a
rod �with the aspect ratio equal to 5� completely agree with
other available calculations.27,32

III. RESULTS AND DISCUSSIONS

A. Surface charge density

We consider a dispersed and homogeneous nanotube so-
lution and calculate the onsets of model parameters for over-
coming thermal agitations of the solvent molecules such that
the nanotubes get oriented parallel to the field. Assuming a
single nanotube surface for Eq. �1�, the surface charge den-
sities are calculated for different radii and lengths. Figure
2�a� shows the induced surface charge densities for metallic
nanotubes of different radii, but with a fixed stem length of
500 nm �excluding the ending hemispheres�, parallel to an
electric field of 1 kV/mm, which is a typical field used in
experiments. We observe that the surface charge densities
peak out at the ending hemispheres, especially for larger as-
pect ratios. Although the surface charge density at any lon-
gitudinal coordinate decreases by increasing the radius 	Fig.
2�a�
, one should notice that the linear charge density in-
creases. Figure 2�b� shows that at points far enough from the

ends, the charge density linearly increases along the nano-
tubes. This is in complete quantitative agreement with the
analytic model that ignores the end contributions.33 Near the
ends, however, the charge density deviates from this linear
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FIG. 2. Surface charge density along metallic nanotubes with
different radii �a�. The nanotube stems �excluding the ending hemi-
spheres� extend from −250 to 250 nm. Surface charge density along
metallic �b� and semiconducting �c� nanotubes with different stem
lengths and a fixed radius of 0.5 nm. The applied electric field of 1
kV/mm is parallel to the nanotube’s axis, and the solvent for semi-
conducting nanotubes is water.
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dependence. Figure 2�b� shows that near the ends, the charge
density satisfies another linear relationship with the length,
i.e., with another proportionality constant.

Figure 2�c� shows the charge densities of semiconducting
nanotubes with different stem lengths but with a fixed radius
of 0.5 nm. For the semiconducting nanotubes, the permittiv-
ity �s=60 is used, which is a typical estimate to the low-
frequency limit of the real part of the dielectric function ob-
served in experiments.34 For the solvent environment, we
consider water with �e=80 as well as silicone oil10–12 with
�e=2.75,35 whose density is very close to that of water. Com-
paring Figs. 2�c� and 2�b�, we notice that the charge density
of the semiconducting nanotubes is independent of the nano-
tube’s length, localized at the ending hemispheres, and
around 3 orders of magnitude less than the charge density of
the metallic nanotubes. The signs of the ending charge den-
sities of the semiconducting and the metallic nanotubes are
opposite, which is due to the fact that the dielectric constant
of the solvent environment is larger than that of the semicon-
ducting nanotubes. The fact that metallic nanotubes have an
infinite effective permittivity36 makes them categorically dif-
ferent from semiconducting nanotubes, whose permittivity
may vary but within a limited range �in comparison to the
infinite permittivity of metallic nanotubes�.

In reality, in addition to purely metallic and semiconduct-
ing nanotubes, “mixed” multiwall nanotubes that contain
both metallic and semiconducting shells may exist. The re-
sponse of such mixed multiwall nanotubes will be dominated
by that of the metallic shell with the largest radius. Mixed
multiwall nanotubes will therefore behave as metallic. For
the case wherein the dominant metallic shell of a mixed mul-
tiwall nanotube is embedded in one or more semiconducting
shells, two basic surfaces with an induced charge would ex-
ist: the surface of the dominant metallic shell and the overall
outer �semiconducting� surface of the multiwall nanotube.
Both of the corresponding surface charge densities can be
calculated within our formalism; however, for simplicity,
here we assume that the dominant metallic shell of a mixed
multiwall nanotube is its outer shell.

Our choice of hemispherical ends for the nanotubes is
justified by the fact that such capped nanotubes are the usual
ones experimentally observed. In fact, hemispherical caps
are energetically more stable compared to, e.g., “flat” caps.
From the computational point of view, Sanchis et al.27

showed that the flat ends for particles with smaller aspect
ratios result in the singularity of the charge density, and
hence the electric field, at the edges of the particle ends. This
causes the interparticle forces to be larger than those calcu-

lated for hemispherical ends. The forces for these two types
of endings, however, are of the same order of magnitude.27

We therefore do not expect our results for the internanotube
forces and yield stress �to be calculated shortly� to qualita-
tively change upon switching between these two types of
endings. As the hemispherical caps correspond to physically
observed nanotubes, here we consider only this type of end-
ing.

B. Energetics of field alignment

By using the calculated charge densities, the nanotube di-
pole moment p is readily obtained. The parameter that deter-
mines the relative strength of the alignment energy as com-
pared to the Brownian agitations is37 �= pE /2kT, where k is
the Boltzmann factor and T is the absolute temperature. For
��1, the electric field overcomes the Brownian forces and
effectively aligns the nanotubes, as depicted in Fig. 1�b�.

Table I shows that for both metallic and semiconducting
nanotubes, � increases with length l. For the semiconducting
nanotubes, the alignment energy is proportional to l because
charges are induced only at the ends. For the metallic nano-
tubes, the growth of energy is much steeper and closer to be
proportional to l3, which is predicted by the analytic solution
without end contributions.33 This can be used to estimate the
onset of the aligning field for which Ealign

2 l3�kT, giving
Ealign��T / l3. Our results, however, are more precise because
we exactly account for the end contributions.

The � values for the semiconducting nanotubes are
around 2–5 orders of magnitude less than those of the corre-
sponding metallic nanotubes. Therefore, for the rest of this
study, only metallic nanotubes are considered. One should
notice, however, that for small-gap semiconducting nano-
tubes, the gap might possibly be closed at large enough tem-
peratures. Such nanotubes should indeed be considered me-
tallic.

Previous works on the properties of suspensions of long
nanoparticles, such as the tobacco mosaic virus37 and gold
nanorods,38 differ from ours in that they did not calculate the
polarizability of their nanoparticles �whose aspect ratios are
much smaller than that of the nanotubes considered here�. In
their models, they consider polarizability as a parameter that
can be extracted from experimental data. They model the
electro-optical properties of the suspensions and are not con-
cerned with aggregation and chaining, which crucially de-
pend on interparticle forces. For nanotubes with large aspect
ratios, the end contributions play a significant role in inter-
nanotube forces. Within our approach, we are able to calcu-

TABLE I. Values of �= pE /2kT for semiconducting �s� and metallic �m� nanotubes with different stem
lengths and radii at T=300 K and E=1 kV /mm. The field-orientation domain is highlighted by the boldface
numbers.

Stem length
�nm�

rs=0.5 nm
�in water�

rs=0.5 nm
�in silicone oil� rm=0.5 nm rm=2.0 nm rm=3.5 nm rm=5.0 nm

100 0.2	10−4 16.9	10−4 0.16 0.28 0.38 0.48

350 0.7	10−4 60.6	10−4 4.96 7.21 8.76 10.13

500 1.1	10−4 86.8	10−4 13.37 18.86 22.46 25.55
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late the polarizations and forces, including the end contribu-
tions. This enables us to model the chaining of nanotubes
and its byproducts such as electrorheology.

C. Energetics of chaining

After alignment with the applied field 	Fig. 1�b�
, chain-
ing of the nanotubes occurs 	Fig. 1�c�
 provided that their
interaction energy overcomes the Brownian agitation. A typi-
cal nanotube concentration in the suspensions used in experi-
ments is 0.01 wt %.10,12 In water or silicone oil, this implies
5	106 carbon atoms per 
m3. We consider multiwall arm-
chair nanotubes with an outer-shell radius of 5 nm and a van
der Waals distance of 0.35 nm between neighboring inner
shells as an example. These nanotubes have roughly 2100
carbon atoms per unit cell. In a homogeneous suspension of
such nanotubes with a length of 350 nm11, the distance be-
tween the neighboring nanotubes both along their axis and
perpendicular to it is a few hundreds nanometers.

We consider five nearest neighbor nanotubes that are
aligned along a common axis for calculating the charge den-
sities. The charge density of the middle one, together with
that of a shifted replica, are then used for the rest of the
calculations. �We checked that modeling an infinite chain of
nanotubes with five nearest neighbors is enough to ensure
relative errors in energies and forces between the middle
nanotube and its shifted replica to be less than �2%.� The
Coulomb attraction potential energy U between two such
nanotubes with radii of 5 nm, lengths of 350 nm, and an
end-to-end intertube distance of 100 nm is obtained, by using
the calculated charge densities under an applied field of 1
kV/mm, to be 31% of the thermal energy kT at room tem-
perature. If the distance between the two ends of these nano-
tubes is the van der Waals distance of 0.35 nm, however, the
Coulomb attraction is 15 times larger than the thermal en-
ergy. Considering the Coulomb repulsion between nearby
parallel nanotubes, thermal agitations eventually result in
chain formation, which constitutes a lower energy
state of the system. The potential energies for different
nanotubes and internanotube distances are compared to kT
�T=300 K� in Fig. 3�a�.

D. Interaction force and charge separation

The attractive force acting between any nanotube-replica
pair i and j, which has been introduced above, is obtained as

F =
1

8��0
�

Si

�
Sj

��x���x��
ẑ . r̂

�x - x��2
dSdS�. �2�

Here, r̂ and ẑ are the unit vectors along x−x� and the com-
mon axis of the nanotubes, respectively. In Eq. �2�, the
charge densities are self-consistently calculated for each in-
ternanotube distance. We calculate the internanotube forces
for a uniaxial chain of nanotubes subject to an electric field
of 1 kV/mm. The results are depicted in Fig. 3�b�. As ex-
pected, decreasing the internanotube distances results in a
stronger Coulomb force. What prevents the nanotubes from
getting connected is either the polymer wrapping or simply
the repulsive van der Waals force.

It is possible to interpret Eq. �2� in terms of the Maxwell
stress tensor.39 Here, as we are concerned with the mutual
forces acting between separate conductors, the surface ele-
ments belong to different �neighboring� nanotubes.
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FIG. 3. Pair interaction potential �in units of kT with
T=300 K� �a�, attractive internanotube force �b�, and the
�continuous� half-nanotube charge �c� for different internanotube
distances in an aggregated chain. The applied electric field is fixed
at 1 kV/mm.
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When the nanotubes are polarized and aggregated as
chains under the electric field, charge separation occurs
within each nanotube. Therefore, for each nanotube, al-
though the total charge is zero, each half would have a net
charge that is opposite to the net charge of the half of the
nearest neighboring nanotube in the chain. This charge sepa-
ration is the basis of the interaction force. The net half-
nanotube charges are depicted in Fig. 3�c�. Although net
charges differ for different nanotubes, Figs. 3�a� and 3�b�
show that increasing the nanotubes’ radii 2.5 times has es-
sentially the same effect on energies and forces as increasing
their lengths �1.4 times.

E. Response time

Here, we use a simple model to estimate the response
time �=RC, where R is the quantum resistance,40 and we
assign an effective capacitance C=Q /V to the polarized
nanotube. Here, Q and V indicate the half-nanotube charge
and the applied potential drop, respectively.

For metallic nanotubes suspended in solution, the “con-
tact” resistance40 does not apply. However, the nanotubes
may have defects, and there are electron-phonon �e-ph� scat-
terings at finite temperatures. The number of defects is
roughly proportional to the length of the nanotube. If we
assume that each defect �say, a vacancy� results in the sup-
pression of one conduction channel of the nanotube,41,42 we
can assign a resistance of �12.9 k� to each defect. It
should be mentioned that resistances of this order are mea-
sured in experiments on individual multiwall nanotubes.43

These resistances will be additive provided that there is a
mechanism of dephasing �presumably including the e-ph in-
teractions and/or solvent molecules� between successive
scatterings of the carriers at different defects. By using the
data of charge separation in Fig. 3�c� for a nanotube with a
radius of 2 nm, a length of 350 nm, and an internanotube
distance of 3.5 Å under an electric field of 1 kV/mm, for
example, the capacitance is derived to be 9.1	10−19 F. As-
suming one defect for the nanotube, the response time would

be �11.7 fs.44 Therefore, in addition to the dc applied field,
our results are valid for ac applied fields whose frequencies
are much smaller than �85 THz, i.e., are roughly on the
order of terahertz or less. Interestingly, our estimate for the
upper bound of the frequency is on the same order of mag-
nitude as typical plasma frequencies of carbon
nanotubes.45–47

The estimation in this section is based on one single de-
fect of a specific type �a vacancy�. This estimate, however,
can be generalized to any other type/number of “defects,”
such as e-ph scatterings, whose resistance can be assessed.

F. Yield stress

The force data determines the rupturing tension48 at dif-
ferent internanotube distances for separating neighboring
nanotubes of a chain along their common axis. As other
breaking routes, e.g., perpendicular to the chain axis, require
less force, the force data in Fig. 3�b� can be used to estimate
the upper bounds for the yield stress49 of different nanotube
chains. A nanotube concentration of 0.01 wt % in water or
silicone oil implies effective cross sectional areas of 1.7
	106 and 3.3	105 nm2 for multiwall nanotubes with radii
of 5 and 2 nm, respectively �the latter has roughly 420 car-
bon atoms per unit cell�. This is based on the assumption that
the internanotube distances are much smaller than their
lengths. Dividing the forces by these effective cross sectional
areas results in the yield-stress upper-bound data depicted in
Fig. 4. Typical experimental values of the shear stress at low
shear rates �which provide estimates of values for the yield
stress� are few tenths to few tens pascals for a field strength
of 1 kV/mm.10–12 The results depicted in Fig. 4 very well
correlate with these experimental values provided that the
internanotube distances are less than 20 nm.

In order to see the importance of an accurate self-
consistent calculation of surface charge density, we compare
our results to those of the analytic solution for “endless”
nanotubes. Assuming a linear induced charge density along
the �metallic� nanotubes, in accordance with the available
analytic model33 and extending this assumption to the ending
caps, one can estimate the resulting internanotube forces. We
have performed such an estimate for nanotubes with
r=2 nm, l=350 nm, and an internanotube distance of 0.35
nm as an example. The augmented linear model �with caps
included� estimates the internanotube force to be 0.08 pN.
Our self-consistent, nonlinear charge densities result in an
internanotube force, which is depicted in Fig. 3�b�, equal to
4.38 pN. Therefore, there is almost 2 orders of magnitude
difference between the results of the augmented linear model
and the accurate self-consistent calculations. It is thus clear
that the aforementioned agreement between our results and
the experimental data would not have been achieved had we
used the augmented linear model, not to mention the nonaug-
mented one.

G. Field onsets for alignment and chaining

Owing to Eq. �1�, the charge densities are linearly propor-
tional to the applied field E. The � values and the internano-
tube energies and forces are therefore proportional to E2. The
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field onsets Ealign and Echain for alignment and chain forma-
tion are defined by �=1 and U=kT, respectively. Ealign and
Echain �in kV/mm� can thus be easily obtained as the inverse
square roots of the � and �the absolute value of� U given in
Table I and Fig. 3�a�, respectively. For example, with r=2
and l=500 nm, we obtain Ealign=0.23 kV /mm, and with the
internanotube distances equal to 2 nm, we get
Echain=0.48 kV /mm. Thus, for this configuration, the elec-
tric field is needed to be almost doubled to get the chains
formed, after the alignment of the nanotubes.

The derivation of Echain explained above is for a chain of
nanotubes aligned with an applied field. If the applied field is
less than Ealign and, as a result, the nanotubes are prone to
randomly agitate owing to thermal energy, a state of persis-
tent polarization will not exist. As persistent polarization is a
prerequisite for chain formation, we should discard Echain if
EchainEalign.

50

IV. CONCLUSIONS

In conclusion, we analyze the polarization, aggregation,
and electrorheology in nanotube suspensions under an elec-

tric field based on a numerically exact method. Estimates of
the upper bounds for yield stress are shown to agree well
with experimental results. We provide an estimate for the
response time of the nanotubes and calculate the range of
applied field frequencies for which the response time can be
considered negligible. The field onsets for two levels of or-
ganization �alignment and chaining� are calculated for vari-
ous system specifications. These onsets control the phase
transition in nanotube suspensions, with exceptional applica-
tion possibilities due to the unique characteristics of the con-
stituting nanotubes.
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