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a b s t r a c t

This paper investigates the transverse and torsional wave in single- and double-walled

carbon nanotubes (SWCNTs and DWCNTs), focusing on the effect of carbon nanotube

microstructure on wave dispersion. The SWCNTs and DWCNTs are modeled as nonlocal

single and double elastic cylindrical shells. Molecular dynamics (MD) simulations

indicate that the wave dispersion predicted by the nonlocal elastic cylindrical shell

theory shows good agreement with that of the MD simulations in a wide frequency

range up to the terahertz region. The nonlocal elastic shell theory provides a better

prediction of the dispersion relationships than the classical shell theory when the

wavenumber is large enough for the carbon nanotube microstructure to have a

significant influence on the wave dispersion. The nonlocal shell models are required

when the wavelengths are approximately less than 2.36�10�9 and 0.95�10�9 m for

transverse wave in armchair (15,15) SWCNT and torsional wave in armchair (10,10)

SWCNT, respectively. Moreover, an MD-based estimation of the scale coefficient e0 for

the nonlocal elastic cylindrical shell model is suggested. Due to the small-scale effects of

SWCNTs and the interlayer van der Waals interaction of DWCNTs, the phase difference

of the transverse wave in the inner and outer tube can be observed in MD simulations in

wave propagation at high frequency. However, the van der Waals interaction has little

effect on the phase difference of transverse wave.

& 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Carbon nanotubes (CNTs) have attracted worldwide attention (Iijima, 1991; Ball, 2001; Baughman et al., 2002) for their
wide range of applications, including atomic force microscopes, field emitters, frictionless nano-actuators, nano-motors,
nano-bearings, nano-springs, nano-fillers for composite materials, and nano-scale electronic devices (Lau, 2003). In
addition to experimental endeavors, CNT modeling is classified into two main categories. The first is atomic modeling,
which includes such techniques as classical molecular dynamics (MD) and tight-binding MD and the density functional
model (Iijima et al., 1996; Hernandez et al., 1998; Sanchez-Portal et al., 1999; Yakobson et al., 1997; Liew et al., 2004b). Li
and Chou (2006) reported an atomistic simulation of single-walled CNTs (SWCNTs) subjected to harmonic waves. Atomic
modeling is limited to systems with a small number of molecules and atoms and is therefore confined to small-scale
modeling. The second category is continuum modeling (Yakobson et al., 1996; Krishnan et al., 1998; Ru, 2000a, b;
ll rights reserved.
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Parnes and Chiskis, 2002), which includes classical (or local) beam and shell theories that are practical for analyzing CNTs
for large-scale systems. Successful work has been conducted with continuum modeling, such as buckling analysis,
dynamics studies, and mechanical property investigations of CNTs (Wong et al., 1997; Lourie et al., 1998; Govindjee and
Sackman, 1999; Wang et al., 2005; Natsuki et al., 2006; Liew et al., 2004a, 2006; Liew and Wang, 2007). Natsuki et al.
(2007) investigated the wave propagation in SWCNTs and double-walled carbon nanotubes (DWCNTs) conveying fluid
through the use of the shell model. Insepov et al. (2006) summarized a few ways to activate surface-traveling waves on the
nanotube surface.

Although the classical continuum models are efficient in CNT mechanical analysis through their relatively simple
formulae, their applicability to the identification of the small-scale effect on the mechanical behavior of CNTs is
questionable. This limited applicability of the classical or local continuum models at small-length scales is partly due to the
fact that classical modeling does not admit intrinsic size dependence in the elastic solutions of inclusions and
inhomogeneities. Sun and Zhang (2003) discussed the limited applicability of continuum models to nanotechnology and
proposed a semi-continuum model to analyze nano-materials. The values of the material properties were found to be
completely dependent on the thickness of the plate structure. The modeling of such a size-dependent phenomenon has
become an active and interesting subject of research in continuum modeling (Sheehan and Lieber, 1996; Yakobson et al.,
1997). Wang (2004) demonstrated the effective in-plane stiffness and bending rigidity of armchair and zigzag CNTs
through analysis of the representative volume element of a graphene layer with continuous elastic models. It was found
that the bending rigidity of the CNTs had a size effect. Wang and Hu (2005) studied flexural wave propagation in SWCNT
through the use of a nonlocal elastic Timoshenko beam model and an MD simulation based on the first-generation reactive
empirical bond order (REBO) potential (Brenner, 1990). Liew et al. (2008) studied the flexural wave propagation in SWCNT
through the use of an MD simulation based on the second-generation REBO (Brenner et al., 2002). The material
microstructure at small size, such as the lattice spacing between individual atoms, becomes increasingly important and the
discrete structure of the material can no longer be homogenized into a continuum. Therefore, the nonlocal elastic
continuum model is expected to take into account the scale effect when tackling large-scale nano-material analysis. Size
effects often become prominent at nanometer scales, and there is increasing interest in the general area of nanotechnology
in explicitly addressing the cause of these effects (Sharma et al., 2003).

The nonlocal elasticity theory (Eringen, 1976, 1983) assumes that the stress state at a given reference point is a function
of the strain field at every point in the body. Therefore, the scale effect can be considered in constitutive equations simply
as a material parameter. However, the classical elasticity theory cannot account for the scale effect, as the stress state is
uniquely dependent on the strain state at the same point. Peddieson et al. (2003) expected the application of the nonlocal
elasticity theory to have potential in the analysis of nano-materials. They applied it to the formulation of a nonlocal version
of the Euler–Bernoulli beam model and concluded that nonlocal continuum mechanics could potentially play a useful role
in nanotechnology applications. Further applications of nonlocal continuum mechanics have been employed in the study of
CNT buckling. Sudak (2003) presented a multiple-column model for the linearized column buckling of multi-walled CNTs
using the theory of nonlocal continuum mechanics. Zhang et al. (2004) proposed a nonlocal multi-shell model for the axial
buckling of multi-walled nanotubes (MWNTs) under axial compression. The nonlocal elastic Euler–Bernoulli and
Timoshenko beam models were applied to study wave propagation in CNTs (Wang, 2005). Wang and Varadan (2007)
studied wave propagation in CNTs based on the nonlocal elastic shell theory. Both theoretical analyses and numerical
simulations have explicitly revealed the small-scale effect on wave dispersion relations for different CNT wavenumbers in
the longitudinal and circumferential directions and for different wavelengths in the circumferential direction. However, no
MD simulations have been available for the validation of shell models in studying transverse and torsional wave
propagation in CNTs.

This paper aims to use nonlocal shell models to study transverse and torsional wave in SWCNTs and DWCNTs
and to provide verification of these models by using MD simulation. The paper is organized as follows. In Section 2,
the nonlocal elastic shell theory is applied to model SWCNTs and DWCNTs. The dispersion of the transverse waves is
calculated. An estimation of the scale coefficient is also provided. In Section 3, the MD model based on the second-
generation REBO potential is outlined. Section 4 presents a discussion of the MD results, and concluding remarks are
included in Section 5.

2. Nonlocal elastic shell theory

In nonlocal elasticity (Eringen, 1976), the stress at a reference point x is considered to be a function of the strain field at
every point in the body. The basic equations for linear, homogeneous, isotropic, and nonlocal elastic solids with zero body
force are given as follows (Eringen, 1983):

sij;j ¼ 0, (1a)

sijðxÞ ¼

Z
aðjx� x0j; tÞCijkl�klðx

0ÞdVðx0Þ; 8x 2 V , (1b)

�ij ¼
1
2ðui;j þ uj;iÞ, (1c)
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where sij and eij are the stress and strain tensors, respectively; Cijkl is the elastic modulus tensor in classical isotropic
elasticity; and ui is the displacement vector. a(jx�x0j,t) is the nonlocal modulus or attenuation function, which incorporates
the nonlocal effects at the reference point x that are produced by local strain at the source x0 into the constitutive equations.
jx�x0j is the Euclidean distance. In t ¼ e0a/l, e0 is a constant appropriate to each material, a is an internal characteristic
length (e.g., the length of the C–C bond, lattice parameter, granular distance), and l is an external characteristic length
(e.g., crack length, wavelength).

The integral–partial differential equations of linear nonlocal elasticity are reduced to singular partial differential
equations of a special class of physically admissible kernel (Eringen, 1983). Thus, Hook’s law for the stress and strain
relation in the polar coordinate system is expressed by

sx � ðe0aÞ2r2sx ¼
E

1� u2
ð�x þ u�yÞ, (2a)

sy � ðe0aÞ2r2sy ¼
E

1� u2
ð�y þ u�xÞ, (2b)

syx � ðe0aÞ2r2syx ¼
E

2ð1þ uÞ gxy, (2c)

sxy � ðe0aÞ2r2sxy ¼
E

2ð1þ uÞ
gxya, (2d)

where E is the Young’s modulus of the material, u is the Poisson’s ratio, x and y are the longitudinal and angular
circumferential coordinates, sx, sy, syx, and sxy are the normal and shear stresses, and ex, ey, and gxy are the normal and
shear strains. The Laplace operator in the polar coordinate system is given by r2

¼ (q2/qx2)+(q2/r2qy2), and r is the radius
measured from the mid-plane of the cross-section in the following CNT analysis. The parameter e0a is the scale coefficient
revealing the small-scale effect on the responses of structures of nano-size. The parameter e0 ¼ 0.39 was given by Eringen
(1983). But there are no experiments conducted to determine the value of e0 for CNT. Wang and Hu (2005) proposed
e0 ¼ 1=

ffiffiffiffiffiffi
12
p

� 0:288 used in the nonlocal beam model. Zhang et al. (2005) estimated e0E0.82 by matching the theoretical
buckling strain obtained by the nonlocal thin shell model (Zhang et al., 2004) to those from molecular mechanics
simulations given by Sears and Batra (2004). A conservative estimate of the scale coefficient e0ao2.0 nm for a SWCNT if the
measured wave propagation frequency value for the SWCNT is greater than 10 THz (Wang, 2005). In this study, we will fix
a ¼ 0.142 nm and give the estimation of parameter e0 by matching the dispersions of CNTs observed from the MD results
with the numerical results obtained from the nonlocal shell model. The parameter a will be assumed to be independent of
the length, diameter, and chirality of CNTs for the wave dispersion.

The nonlocal elastic cylindrical shell theory, which is based on the Flugge shell theory (Flugge, 1960), was developed by
Wang and Varadan (2007). The application of the nonlocal elastic cylindrical shell theory to each tube of an
armchair–armchair (10,10)@(15,15) DWCNT yields six equations that govern its free vibrations, as follows:

r2
k

q2uk

qx2
þ

1

2
ð1� uÞ q
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where pk (k ¼ 1, 2) is the van der Waals (vdW) force between the adjacent tubes. The (inward positive) net radial pressure
pk on tube k is given as follows:

p1 ¼ c12ðo1 �o2Þ and p2 ¼ c21ðo2 �o1Þ, (4)

where cij (i, j ¼ 1, 2) is the vdW interaction coefficient, which is estimated as (He et al., 2005)

cij ¼ �
1001p�s12

3a4
E13

ij �
1120p�s6

9a4
E7

ij

� �
Rj, (5)
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where

Em
ij ¼ ðRj þ RiÞ

�m

Z p=2

0

dy
½1� Kij cos2 y�m=2

(6)

and

Kij ¼
4RjRi

ðRj þ RiÞ
2

. (7)

The wave propagation solution for CNTs can be expressed as

uðx; tÞ ¼ Ueiðlxþmy�otÞ, (8a)

vðx; tÞ ¼ Veiðlxþmy�otÞ, (8b)

wðx; tÞ ¼Weiðlxþmy�otÞ, (8c)

where U, V, and W denote the longitudinal, circumferential, and radial displacement amplitudes of tube k, respectively. l is
the wavenumber in the longitudinal direction, o is the frequency of the wave motion. The proposed nonlocal Flugge shell
theory in Eqs. (3a)–(3c) can conform to the local theory if the scale coefficient, e0a ¼ 0, is set to zero.

An important case result from considering motion independent of y. Thus q/qy ¼ 0

r2 q
2u

qx2
� ur

qw

qx
þ ð1� u2Þ

D

Ehr2
r3 q

3w

qx3
¼
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ð1� u2Þr2ð1� ðe0aÞ2r

2
Þ
q2u

qt2
(9a)
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ur
qu

qx
�w� ð1� u2Þ

D

Ehr2
r4r2r2wþ r3 q

3u

qx3

 !
¼

1

Eh
ð1� u2Þr2ð1� ðe0aÞ2r2

Þ
q2w

qt2
rh� p

 !
. (9c)

Eq. (9b) is uncoupled from the other two equations and represents the purely torsional motion of the shell. The pure
torsional wave propagation solution for CNTs can be expressed as n(x, t) ¼ Vei(kx�ot). Substituting the expression to
Eq. (9b) leads to the velocity of torsion wave:

v ¼
1

1� ðe0aÞ2k2

E

2rð1þ uÞ
þ

3Dð1� uÞ
2hrr2

� �
. (10)

The material parameters of CNTs are proposed as: in-plane stiffness Eh ¼ 360 J/m2 (Yakobson et al., 1996), mass density
rh ¼ (2.27 g/cm3)�0.34 nm.

Adams et al. (1992) suggested the bending rigidity, D ¼ 1.62 eV, by applying the quantum MD methods using both
empirical and local density functional methods to evaluate the energies of a number of ball-shaped and tubular fullerenes
of various sizes. The bending rigidity D ¼ 1.46 eV was evaluated based on ab initio energy calculations by Kudin et al.,
(2001). The value of bending rigidity, D ¼ 2 eV, was proposed in a study in which the results of the phonon dispersion
relations of a CNT were compared with those based on the local elasticity theory for a cylindrical medium (Wang et al.,
2005). Wang and Liew (2008) proposed the bending rigidity 1.78 eV using molecular mechanics calculations for relatively
large tubes and graphite sheets. D ¼ 1.78 eV will be used in this study. The substitution of Eqs. (9a)–(9c) into Eqs. (3a)–(3c)
ultimately yields a generalized eigenvalue problem, as follows:

Mfðl;mÞ;og6�6

U1

V1

W1

U2

V2

W2

8>>>>>>>>><
>>>>>>>>>:

9>>>>>>>>>=
>>>>>>>>>;
¼ 0, (11)

where the entries of matrices M are functions of the wavenumbers l and o and the scale coefficient e0a. The condition for
the existence of nonzero solutions Uk and Wk (k ¼ 1, 2) is

det M ¼ 0. (12)

The six dispersion relations can be obtained by solving Eq. (12) for a given wavenumber m ¼ 2. The numerical results are
shown in Fig. 1. One of them will be used to predict the dispersion of the transverse wave in an armchair–armchair
(10,10)@(15,15) DWCNT.
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3. Molecular dynamics model for carbon nanotubes

To check the applicability of the dispersion relations produced by the nonlocal cylindrical shell model to SWCNTs and
DWCNTs, MD simulations are presented. The transverse and torsional wave can be produced when the atoms at the end of
CNT are excited in a way showed in Fig. 1(a) and (b), respectively. The lengths of SWCNTs and DWCNTs are about 19.7 nm.

In the corresponding MD models, the interaction of the atoms in each tube is described by the second-generation REBO
potential energy expression for hydrocarbons, whereas the van der Waals force between the inner and outer walls is
described by the Lennard-Jones (1924) potential. In the second-generation REBO potential, the total potential energy of the
system is given by

EREBO ¼
X

i

X
j¼iþ1

½ERðrijÞ � bijEAðrijÞ�, (13)

where rij is the distance between the pairs of adjacent atoms i and j, and bij is a many-bond empirical bond-order term
between the atoms i and j that is derived from the Huckel electronic structure theory. ER and EA are the repulsive and
attractive pair terms, respectively:

ERðrÞ ¼ f cðrÞ 1þ
Q

r

� �
A expð�arÞ, (14)

EAðrÞ ¼ f cðrÞ
X3

n¼1

Bne�bnr , (15)

where the parameters Q, A, a, B, b are used to fit the pair terms, and the values for all parameters are given by Brenner et al
(2002). The function fc is a cutoff function and is given by

f cðrÞ ¼

1; roRmin;

1þf g cos
pðr � RminÞ

ðRmax � RminÞ

� ��
2; RminoroRmax;

0; r4Rmax;

8>>><
>>>:

(16)

where Rmax�Rmin defines the distance over the function that goes from one to zero. For graphite and CNTs, Rmax ¼ 0.2 nm
and Rmin ¼ 0.17 nm, respectively.

The van der Waals interaction between the inner and outer walls is modeled by the Lennard-Jones potential, as follows:

VijðrijÞ ¼ 4x
s
rij

� �12

�
s
rij

� �6
" #

, (17)

where the coefficients of well-depth energy x and the equilibrium distance s are 4.20383�10�3 eV and 3.4 Å, respectively
(Moller et al., 1991).Using the second-generation REBO potential, we computed the Poisson’s ratio n ¼ 0.317 and Young’s
modulus E ¼ 0.83 TPa for the armchair (10,10) and (15,15) CNTs that were derived from the MD simulation for the test of
axial tension. The Poisson’s ratio n ¼ 0.347 and Young’s modulus E ¼ 0.8 TPa are calculated for the zigzag (20,0) CNT.
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4. Results and discussion

It is quite straightforward to determine the phase velocity and wavenumber from the transverse vibration of atoms in
two arbitrary sections of a CNT that was simulated using MD. The harmonic deflection of some atoms was achieved by
shifting the atoms at one end of the nanotube while the other end was kept free as showed in Fig. 2(a). For example,
some atoms that are located at the end of the armchair (15,15) SWCNT denoted by Section 0 were assumed to be
subject to the harmonic deflection of period T ¼ 500 fs, as shown in Fig. 3(a). The corresponding angular frequency is
o ¼ 2p/TE1.26�1013 rad/s. Figs. 3(b) and (c) show the transverse vibrations of the atom in Section 1 at x1 ¼ 2.46 nm and
Section 2 at x2 ¼ 4.92 nm, respectively. If the transient deflection of the first two periods is neglected, then the propagation
duration Dt of the wave from Section 1 to Section 2 can be estimated as

Dt �
ðt23 � t13Þ þ ðt24 � t14Þ þ � � � þ ðt2n � t1nÞ

n� 2
. (18)

The phase velocity and wavenumber are, respectively

c ¼
x2 � x1

Dt
; k ¼

2p
l
¼
oT

l
¼
o
c

. (19)
A

X

Y

Fig. 2. (a) The atoms at the end of the CNT are subjected to harmonic excitation to move in different direction at the same time and (b) every atom like

atom A at the end of the CNT swings through a small angle after exited.

0 1000 2000 3000 4000 5000

-0.01

0.00

0.01

0.02 t24t23t22t21

Time (fs)

section 2

-0.01

0.00

0.01

0.02 t14t13t12t11

Tr
an

sv
er

se
 d

ef
le

ct
io

n 
(1

0-1
0 m

)

section 1

-0.010
-0.005
0.000
0.005
0.010

t04t03t01 t02

section 0
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Section 0, (b) the deflection of Section 1, 2.46 nm ahead of Section 0, and (c) the deflection of Section 2, 4.92 nm ahead of Section 0.
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When the atoms at the end of CNT are subjected to the harmonic excitation indicated in Fig. 2(b), the torsional wave will
propagate in SWCNT showed in Fig. 4. The torsional wave velocity can be calculated through the method for calculating
transverse wave velocity.

Figs. 5 illustrates the dispersion relations between the phase velocity c and the wavenumber k of the transverse wave in
the armchair (15,15) SWCNT and zigzag (20,0) SWCNT. Figs. 5 shows the nonlocal shell model can predict the MD results
better than the local shell model can when the wavelengths are less than 2.36�10�9 and 1.88�10�9 m for (15,15) SWCNT
and (20,0) SWCNT, respectively. The value of the parameter e0 ¼ 0.6 is used for transverse wave in armchair (15,15) and
zigzag (20,0) CNT.

Fig. 6 shows that the nonlocal elastic cylindrical double-shell model can predict the dispersion relation of the
transverse wave better than local double-shell model when the wavenumber is large enough. This is because the
interlayer van der Waals interaction of the DWCNT and the small-scale effect on the dispersion of the transverse wave of
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the SWCNT are considered. The phase velocity decreases when the wavenumber is approximately larger than 2.65�109 l/m,
or the wavelength is approximately less than 2.35�10�9 m. The nonlocal elastic double-shell model can predict the
wave dispersion better than local shell model when the wavelength is approximately smaller than 2.35�10�9 m. Fig. 7
indicates that the nonlocal shell model can predict dispersion relation obtained from the MD simulation of torsional
wave in (10,10) SWCNT and (15,15) SWCNT better than local shell model can when the wavelength is smaller than
0.95�10�9 and 0.9�10�9 m, respectively. The good agreement between the nonlocal elastic cylindrical shell models
results and the MD simulations verifies the effectiveness of this model. The value of the parameter e0 ¼ 0.6 is adopted
for (10,10)@(15,15) DWCNT to predict the dispersion of transverse wave in CNTs, and e0 ¼ 0.2 and 0.23 are used for
torsional wave in SWCNT (10,10) and SWCNT (15,15), respectively. The estimates of e0 are investigated through
the comparison between the dispersion relations obtained from numerical results of equations and MD simulation. The
value of e0 which is a coefficient to identify the scale effect should be different for different issues, such as dispersions of
different elastic waves in SWCNT and DWCNT. The scale coefficient is dependent on SWCNT and DWCNT for transverse
wave, and CNTs for torsional wave. When the vale of e0 becomes smaller, the scale effect will be weaker. The torsional
wave motion is only related to the displacement in tangential direction, while the transverse wave motion is involved
in the displacements in longitudinal, radial, and tangential direction. The carbon atoms vibrating more complicated in the
transverse wave propagation in CNT leads to the stronger scale effect on the dispersion of transverse wave. This is
the main reason why the vale of e0 ¼ 0.2 for the torsional wave in SWCNT is much smaller than the values of e0 ¼ 0.6
used for transverse wave in CNTs. The structure of CNTs, such as chirality, diameter and layers, may also be the
factors to affect the value of e0. But for the same problem such as transverse wave or torsional wave in CNT, these
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structure differences lead to relative small change of the value of e0 compared to the changes of values for different
problems.

Fig. 8 indicates that the obvious phase difference of inner and outer tube of the (10,10)@(15,15) DWCNT will occur at the
period T ¼ 300 fs. The corresponding angular frequency is o ¼ 2p/TE3.14�1013 rad/s. The average phase difference
between the inner tube and the outer tube can be estimated from Fig. 8 as t̄ ¼ ð1=nÞ

Pn
i¼1ðt0i � t1iÞ � 103:2 fs. Fig. 9 indicates

that the SWCNTs (10,10) and (15,15) have different phases at the period T ¼ 300 fs without considering the van der
Waals forces between them. The average phase difference between the SWCNTs (10,10) and (15,15) can also be estimated
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Table 1
The average phase differences of the vibrations of atom at the section, 2.46 nm ahead of the end of the DWCNTs (10,10)@(15,15) and the SWCNTs (10,10)

and (15,15)

Period (fs) DWCNTs (10,10)@(15,15) (fs) SWCNTs (10,10) and (15,15) (fs) |s̄� t̄| (fs)

T ¼ 300 t̄ ¼ 103:2 s̄ ¼ 101:2 2

T ¼ 400 t̄ ¼ 80:3 s̄ ¼ 74:1 6.2

T ¼ 500 t̄ ¼ 59:8 s̄ ¼ 38:8 21

T ¼ 600 t̄ ¼ 54 s̄ ¼ 29 25

T ¼ 700 t̄ ¼ 43:3 s̄ ¼ 40 3.3
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from Fig. 9: s̄ ¼ ð1=nÞ
Pn

i¼1ðs0i � s1iÞ � 101:2 fs. The other average phase differences at different periods are shown in Table 1.
The phase difference of the vibration becomes increasingly obvious with the decrease of the period. The phase difference
increases from 43.3 to 103.2 fs as the period decreases from 700 to 300 fs for DWCNTs. Similarly, the phase difference
increases from 40 to 101.2 fs as the period decreases from 700 to 300 fs for SWCNTs. The van der Waals forces make
no significant contribution to the phase differences of the transverse wave in the inner and outer tube, as the phase
differences would occur without consideration of the van der Waals forces between the adjacent tubes. This indicates that
the small-scale effects can change the phase when the frequency is extremely high.

5. Concluding remarks

This paper presents a study of transverse and torsional wave dispersion in SWCNT and DWCNTs on the basis of the
nonlocal elastic cylindrical shell theory and the use of MD simulations for SWCNT and an armchair–armchair
(10,10)@(15,15) DWCNT in a wide range of wavenumbers. The value of parameter e0 is estimated based on the MD
result to predict the dispersion of transverse wave in CNTs through using the nonlocal shell models. The results of this
study indicate that the nonlocal elastic cylindrical shell model is able to offer a better prediction for transverse and
torsional wave dispersion in CNTs than the local elastic shell model when the wavenumber is large enough. The nonlocal
shell models are required when the wavelengths are approximately less than 2.36�10�9 and 0.95�10�9 m for transverse
wave in armchair (15,15) SWCNT and torsional wave in armchair (10,10) SWCNT, respectively. These small-scale effects
have a significant effect on the phase difference of transverse wave in inner and outer tube of DWCNTs at high frequency.
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